Metamath Proof Explorer


Theorem lcmfn0val

Description: The value of the _lcm function for a set without 0. (Contributed by AV, 21-Aug-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfn0val ZZFin0Zlcm_Z=supn|mZmn<

Proof

Step Hyp Ref Expression
1 lcmfval ZZFinlcm_Z=if0Z0supn|mZmn<
2 1 3adant3 ZZFin0Zlcm_Z=if0Z0supn|mZmn<
3 df-nel 0Z¬0Z
4 iffalse ¬0Zif0Z0supn|mZmn<=supn|mZmn<
5 3 4 sylbi 0Zif0Z0supn|mZmn<=supn|mZmn<
6 5 3ad2ant3 ZZFin0Zif0Z0supn|mZmn<=supn|mZmn<
7 2 6 eqtrd ZZFin0Zlcm_Z=supn|mZmn<