| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-lcmf |
⊢ lcm = ( 𝑧 ∈ 𝒫 ℤ ↦ if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 2 |
|
eleq2 |
⊢ ( 𝑧 = 𝑍 → ( 0 ∈ 𝑧 ↔ 0 ∈ 𝑍 ) ) |
| 3 |
|
raleq |
⊢ ( 𝑧 = 𝑍 → ( ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ) ) |
| 4 |
3
|
rabbidv |
⊢ ( 𝑧 = 𝑍 → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) |
| 5 |
4
|
infeq1d |
⊢ ( 𝑧 = 𝑍 → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 6 |
2 5
|
ifbieq2d |
⊢ ( 𝑧 = 𝑍 → if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 7 |
|
zex |
⊢ ℤ ∈ V |
| 8 |
7
|
ssex |
⊢ ( 𝑍 ⊆ ℤ → 𝑍 ∈ V ) |
| 9 |
|
elpwg |
⊢ ( 𝑍 ∈ V → ( 𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑍 ⊆ ℤ → ( 𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ ) ) |
| 11 |
10
|
ibir |
⊢ ( 𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → 𝑍 ∈ 𝒫 ℤ ) |
| 13 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 14 |
13
|
a1i |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) → 0 ∈ ℕ0 ) |
| 15 |
|
df-nel |
⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) |
| 16 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ℕ |
| 17 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
| 18 |
16 17
|
sstri |
⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ℕ0 |
| 19 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 20 |
16 19
|
sseqtri |
⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ( ℤ≥ ‘ 1 ) |
| 21 |
|
fissn0dvdsn0 |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ) |
| 22 |
21
|
3expa |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ) |
| 23 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) |
| 24 |
20 22 23
|
sylancr |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) |
| 25 |
18 24
|
sselid |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ∈ ℕ0 ) |
| 26 |
15 25
|
sylan2br |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ∈ ℕ0 ) |
| 27 |
14 26
|
ifclda |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ∈ ℕ0 ) |
| 28 |
1 6 12 27
|
fvmptd3 |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |