Metamath Proof Explorer


Theorem leaddsuble

Description: Addition and subtraction on one side of "less than or equal to". (Contributed by Alexander van der Vekens, 18-Mar-2018)

Ref Expression
Assertion leaddsuble ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵𝐶 ↔ ( ( 𝐴 + 𝐵 ) − 𝐶 ) ≤ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 leadd2 ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐶 ↔ ( 𝐴 + 𝐵 ) ≤ ( 𝐴 + 𝐶 ) ) )
2 1 3comr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵𝐶 ↔ ( 𝐴 + 𝐵 ) ≤ ( 𝐴 + 𝐶 ) ) )
3 readdcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )
4 3 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )
5 simp3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ )
6 simp1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ )
7 4 5 6 lesubaddd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) ≤ 𝐴 ↔ ( 𝐴 + 𝐵 ) ≤ ( 𝐴 + 𝐶 ) ) )
8 2 7 bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵𝐶 ↔ ( ( 𝐴 + 𝐵 ) − 𝐶 ) ≤ 𝐴 ) )