| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leadd2 |
|- ( ( B e. RR /\ C e. RR /\ A e. RR ) -> ( B <_ C <-> ( A + B ) <_ ( A + C ) ) ) |
| 2 |
1
|
3comr |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C <-> ( A + B ) <_ ( A + C ) ) ) |
| 3 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| 4 |
3
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR ) |
| 5 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
| 6 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 7 |
4 5 6
|
lesubaddd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A + B ) - C ) <_ A <-> ( A + B ) <_ ( A + C ) ) ) |
| 8 |
2 7
|
bitr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C <-> ( ( A + B ) - C ) <_ A ) ) |