Metamath Proof Explorer


Theorem leaddsuble

Description: Addition and subtraction on one side of "less than or equal to". (Contributed by Alexander van der Vekens, 18-Mar-2018)

Ref Expression
Assertion leaddsuble
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C <-> ( ( A + B ) - C ) <_ A ) )

Proof

Step Hyp Ref Expression
1 leadd2
 |-  ( ( B e. RR /\ C e. RR /\ A e. RR ) -> ( B <_ C <-> ( A + B ) <_ ( A + C ) ) )
2 1 3comr
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C <-> ( A + B ) <_ ( A + C ) ) )
3 readdcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR )
4 3 3adant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR )
5 simp3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR )
6 simp1
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR )
7 4 5 6 lesubaddd
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A + B ) - C ) <_ A <-> ( A + B ) <_ ( A + C ) ) )
8 2 7 bitr4d
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C <-> ( ( A + B ) - C ) <_ A ) )