Metamath Proof Explorer


Theorem 2leaddle2

Description: If two real numbers are less than a third real number, the sum of the real numbers is less than twice the third real number. (Contributed by Alexander van der Vekens, 21-May-2018)

Ref Expression
Assertion 2leaddle2
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ B < C ) -> ( A + B ) < ( 2 x. C ) ) )

Proof

Step Hyp Ref Expression
1 readdcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR )
2 1 3adant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR )
3 readdcl
 |-  ( ( C e. RR /\ C e. RR ) -> ( C + C ) e. RR )
4 3 anidms
 |-  ( C e. RR -> ( C + C ) e. RR )
5 4 3ad2ant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + C ) e. RR )
6 2re
 |-  2 e. RR
7 remulcl
 |-  ( ( 2 e. RR /\ C e. RR ) -> ( 2 x. C ) e. RR )
8 6 7 mpan
 |-  ( C e. RR -> ( 2 x. C ) e. RR )
9 8 3ad2ant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( 2 x. C ) e. RR )
10 2 5 9 3jca
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) e. RR /\ ( C + C ) e. RR /\ ( 2 x. C ) e. RR ) )
11 10 adantr
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( ( A + B ) e. RR /\ ( C + C ) e. RR /\ ( 2 x. C ) e. RR ) )
12 id
 |-  ( ( A e. RR /\ B e. RR ) -> ( A e. RR /\ B e. RR ) )
13 12 3adant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) )
14 id
 |-  ( C e. RR -> C e. RR )
15 14 14 jca
 |-  ( C e. RR -> ( C e. RR /\ C e. RR ) )
16 15 3ad2ant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. RR /\ C e. RR ) )
17 13 16 jca
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ C e. RR ) ) )
18 17 adantr
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ C e. RR ) ) )
19 simpr
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( A < C /\ B < C ) )
20 lt2add
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ C e. RR ) ) -> ( ( A < C /\ B < C ) -> ( A + B ) < ( C + C ) ) )
21 18 19 20 sylc
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( A + B ) < ( C + C ) )
22 recn
 |-  ( C e. RR -> C e. CC )
23 22 2timesd
 |-  ( C e. RR -> ( 2 x. C ) = ( C + C ) )
24 8 leidd
 |-  ( C e. RR -> ( 2 x. C ) <_ ( 2 x. C ) )
25 23 24 eqbrtrrd
 |-  ( C e. RR -> ( C + C ) <_ ( 2 x. C ) )
26 25 3ad2ant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + C ) <_ ( 2 x. C ) )
27 26 adantr
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( C + C ) <_ ( 2 x. C ) )
28 21 27 jca
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( ( A + B ) < ( C + C ) /\ ( C + C ) <_ ( 2 x. C ) ) )
29 ltletr
 |-  ( ( ( A + B ) e. RR /\ ( C + C ) e. RR /\ ( 2 x. C ) e. RR ) -> ( ( ( A + B ) < ( C + C ) /\ ( C + C ) <_ ( 2 x. C ) ) -> ( A + B ) < ( 2 x. C ) ) )
30 11 28 29 sylc
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( A + B ) < ( 2 x. C ) )
31 30 ex
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ B < C ) -> ( A + B ) < ( 2 x. C ) ) )