Step |
Hyp |
Ref |
Expression |
1 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
2 |
1
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR ) |
3 |
|
readdcl |
|- ( ( C e. RR /\ C e. RR ) -> ( C + C ) e. RR ) |
4 |
3
|
anidms |
|- ( C e. RR -> ( C + C ) e. RR ) |
5 |
4
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + C ) e. RR ) |
6 |
|
2re |
|- 2 e. RR |
7 |
|
remulcl |
|- ( ( 2 e. RR /\ C e. RR ) -> ( 2 x. C ) e. RR ) |
8 |
6 7
|
mpan |
|- ( C e. RR -> ( 2 x. C ) e. RR ) |
9 |
8
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( 2 x. C ) e. RR ) |
10 |
2 5 9
|
3jca |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) e. RR /\ ( C + C ) e. RR /\ ( 2 x. C ) e. RR ) ) |
11 |
10
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( ( A + B ) e. RR /\ ( C + C ) e. RR /\ ( 2 x. C ) e. RR ) ) |
12 |
|
id |
|- ( ( A e. RR /\ B e. RR ) -> ( A e. RR /\ B e. RR ) ) |
13 |
12
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) ) |
14 |
|
id |
|- ( C e. RR -> C e. RR ) |
15 |
14 14
|
jca |
|- ( C e. RR -> ( C e. RR /\ C e. RR ) ) |
16 |
15
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. RR /\ C e. RR ) ) |
17 |
13 16
|
jca |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ C e. RR ) ) ) |
18 |
17
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ C e. RR ) ) ) |
19 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( A < C /\ B < C ) ) |
20 |
|
lt2add |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ C e. RR ) ) -> ( ( A < C /\ B < C ) -> ( A + B ) < ( C + C ) ) ) |
21 |
18 19 20
|
sylc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( A + B ) < ( C + C ) ) |
22 |
|
recn |
|- ( C e. RR -> C e. CC ) |
23 |
22
|
2timesd |
|- ( C e. RR -> ( 2 x. C ) = ( C + C ) ) |
24 |
8
|
leidd |
|- ( C e. RR -> ( 2 x. C ) <_ ( 2 x. C ) ) |
25 |
23 24
|
eqbrtrrd |
|- ( C e. RR -> ( C + C ) <_ ( 2 x. C ) ) |
26 |
25
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + C ) <_ ( 2 x. C ) ) |
27 |
26
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( C + C ) <_ ( 2 x. C ) ) |
28 |
21 27
|
jca |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( ( A + B ) < ( C + C ) /\ ( C + C ) <_ ( 2 x. C ) ) ) |
29 |
|
ltletr |
|- ( ( ( A + B ) e. RR /\ ( C + C ) e. RR /\ ( 2 x. C ) e. RR ) -> ( ( ( A + B ) < ( C + C ) /\ ( C + C ) <_ ( 2 x. C ) ) -> ( A + B ) < ( 2 x. C ) ) ) |
30 |
11 28 29
|
sylc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A < C /\ B < C ) ) -> ( A + B ) < ( 2 x. C ) ) |
31 |
30
|
ex |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ B < C ) -> ( A + B ) < ( 2 x. C ) ) ) |