| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leatom.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
leatom.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
leatom.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 4 |
|
leatom.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
1 2 3
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ 𝑋 ) |
| 6 |
5
|
3adant3 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 0 ≤ 𝑋 ) |
| 7 |
6
|
biantrurd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃 ) ) ) |
| 8 |
|
opposet |
⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
| 10 |
1 3
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
| 11 |
1 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 12 |
|
id |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) |
| 13 |
10 11 12
|
3anim123i |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 14 |
13
|
3com23 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 15 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
| 16 |
3 15 4
|
atcvr0 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 17 |
16
|
3adant2 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 18 |
1 2 15
|
cvrnbtwn4 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) → ( ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃 ) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃 ) ) ) |
| 19 |
9 14 17 18
|
syl3anc |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃 ) ↔ ( 0 = 𝑋 ∨ 𝑋 = 𝑃 ) ) ) |
| 20 |
|
eqcom |
⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) |
| 21 |
20
|
orbi1i |
⊢ ( ( 0 = 𝑋 ∨ 𝑋 = 𝑃 ) ↔ ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ) |
| 22 |
19 21
|
bitrdi |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 0 ≤ 𝑋 ∧ 𝑋 ≤ 𝑃 ) ↔ ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ) ) |
| 23 |
7 22
|
bitrd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ) ) |
| 24 |
|
orcom |
⊢ ( ( 𝑋 = 0 ∨ 𝑋 = 𝑃 ) ↔ ( 𝑋 = 𝑃 ∨ 𝑋 = 0 ) ) |
| 25 |
23 24
|
bitrdi |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑃 ↔ ( 𝑋 = 𝑃 ∨ 𝑋 = 0 ) ) ) |