Step |
Hyp |
Ref |
Expression |
1 |
|
leop2 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 ≤op 𝑈 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
2 |
|
leop2 |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑈 ≤op 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
3 |
2
|
ancoms |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑈 ≤op 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
4 |
1 3
|
anbi12d |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 𝑇 ≤op 𝑈 ∧ 𝑈 ≤op 𝑇 ) ↔ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
5 |
|
hmopre |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
6 |
5
|
adantlr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
7 |
|
hmopre |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
8 |
7
|
adantll |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
9 |
6 8
|
letri3d |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
10 |
9
|
ralbidva |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
11 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ↔ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
12 |
10 11
|
bitr2di |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
13 |
|
hmoplin |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp ) |
14 |
|
hmoplin |
⊢ ( 𝑈 ∈ HrmOp → 𝑈 ∈ LinOp ) |
15 |
|
lnopeq |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑈 ∈ LinOp ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 ) ) |
16 |
13 14 15
|
syl2an |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 ) ) |
17 |
4 12 16
|
3bitrd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 𝑇 ≤op 𝑈 ∧ 𝑈 ≤op 𝑇 ) ↔ 𝑇 = 𝑈 ) ) |