Metamath Proof Explorer


Theorem leoptri

Description: The positive operator ordering relation satisfies trichotomy. Exercise 1(iii) of Retherford p. 49. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoptri ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 𝑇op 𝑈𝑈op 𝑇 ) ↔ 𝑇 = 𝑈 ) )

Proof

Step Hyp Ref Expression
1 leop2 ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇op 𝑈 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ) )
2 leop2 ( ( 𝑈 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑈op 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ) )
3 2 ancoms ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑈op 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ) )
4 1 3 anbi12d ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 𝑇op 𝑈𝑈op 𝑇 ) ↔ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ) ) )
5 hmopre ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝑥 ) ∈ ℝ )
6 5 adantlr ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝑥 ) ∈ ℝ )
7 hmopre ( ( 𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∈ ℝ )
8 7 adantll ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∈ ℝ )
9 6 8 letri3d ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ↔ ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ) ) )
10 9 ralbidva ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ) ) )
11 r19.26 ( ∀ 𝑥 ∈ ℋ ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ) ↔ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ) )
12 10 11 bitr2di ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑈𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇𝑥 ) ·ih 𝑥 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ) )
13 hmoplin ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp )
14 hmoplin ( 𝑈 ∈ HrmOp → 𝑈 ∈ LinOp )
15 lnopeq ( ( 𝑇 ∈ LinOp ∧ 𝑈 ∈ LinOp ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 ) )
16 13 14 15 syl2an ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 ) )
17 4 12 16 3bitrd ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 𝑇op 𝑈𝑈op 𝑇 ) ↔ 𝑇 = 𝑈 ) )