| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ↔ ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 2 |
|
hmopre |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
| 3 |
|
hmopre |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
| 4 |
|
hmopre |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) |
| 5 |
|
letr |
⊢ ( ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ∧ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ∧ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ∈ ℝ ) → ( ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 6 |
2 3 4 5
|
syl3an |
⊢ ( ( ( 𝑆 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) ) → ( ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 7 |
6
|
3anandirs |
⊢ ( ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 8 |
7
|
ralimdva |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 9 |
1 8
|
biimtrrid |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) → ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 10 |
|
leop2 |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑆 ≤op 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑆 ≤op 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 12 |
|
leop2 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 ≤op 𝑈 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 13 |
12
|
3adant1 |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 ≤op 𝑈 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 14 |
11 13
|
anbi12d |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 𝑆 ≤op 𝑇 ∧ 𝑇 ≤op 𝑈 ) ↔ ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ∧ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 15 |
|
leop2 |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑆 ≤op 𝑈 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 16 |
15
|
3adant2 |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑆 ≤op 𝑈 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 17 |
9 14 16
|
3imtr4d |
⊢ ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ( 𝑆 ≤op 𝑇 ∧ 𝑇 ≤op 𝑈 ) → 𝑆 ≤op 𝑈 ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( 𝑆 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑆 ≤op 𝑇 ∧ 𝑇 ≤op 𝑈 ) ) → 𝑆 ≤op 𝑈 ) |