Metamath Proof Explorer


Theorem leoptr

Description: The positive operator ordering relation is transitive. Exercise 1(iv) of Retherford p. 49. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoptr SHrmOpTHrmOpUHrmOpSopTTopUSopU

Proof

Step Hyp Ref Expression
1 r19.26 xSxihxTxihxTxihxUxihxxSxihxTxihxxTxihxUxihx
2 hmopre SHrmOpxSxihx
3 hmopre THrmOpxTxihx
4 hmopre UHrmOpxUxihx
5 letr SxihxTxihxUxihxSxihxTxihxTxihxUxihxSxihxUxihx
6 2 3 4 5 syl3an SHrmOpxTHrmOpxUHrmOpxSxihxTxihxTxihxUxihxSxihxUxihx
7 6 3anandirs SHrmOpTHrmOpUHrmOpxSxihxTxihxTxihxUxihxSxihxUxihx
8 7 ralimdva SHrmOpTHrmOpUHrmOpxSxihxTxihxTxihxUxihxxSxihxUxihx
9 1 8 biimtrrid SHrmOpTHrmOpUHrmOpxSxihxTxihxxTxihxUxihxxSxihxUxihx
10 leop2 SHrmOpTHrmOpSopTxSxihxTxihx
11 10 3adant3 SHrmOpTHrmOpUHrmOpSopTxSxihxTxihx
12 leop2 THrmOpUHrmOpTopUxTxihxUxihx
13 12 3adant1 SHrmOpTHrmOpUHrmOpTopUxTxihxUxihx
14 11 13 anbi12d SHrmOpTHrmOpUHrmOpSopTTopUxSxihxTxihxxTxihxUxihx
15 leop2 SHrmOpUHrmOpSopUxSxihxUxihx
16 15 3adant2 SHrmOpTHrmOpUHrmOpSopUxSxihxUxihx
17 9 14 16 3imtr4d SHrmOpTHrmOpUHrmOpSopTTopUSopU
18 17 imp SHrmOpTHrmOpUHrmOpSopTTopUSopU