Metamath Proof Explorer


Theorem leoptri

Description: The positive operator ordering relation satisfies trichotomy. Exercise 1(iii) of Retherford p. 49. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoptri T HrmOp U HrmOp T op U U op T T = U

Proof

Step Hyp Ref Expression
1 leop2 T HrmOp U HrmOp T op U x T x ih x U x ih x
2 leop2 U HrmOp T HrmOp U op T x U x ih x T x ih x
3 2 ancoms T HrmOp U HrmOp U op T x U x ih x T x ih x
4 1 3 anbi12d T HrmOp U HrmOp T op U U op T x T x ih x U x ih x x U x ih x T x ih x
5 hmopre T HrmOp x T x ih x
6 5 adantlr T HrmOp U HrmOp x T x ih x
7 hmopre U HrmOp x U x ih x
8 7 adantll T HrmOp U HrmOp x U x ih x
9 6 8 letri3d T HrmOp U HrmOp x T x ih x = U x ih x T x ih x U x ih x U x ih x T x ih x
10 9 ralbidva T HrmOp U HrmOp x T x ih x = U x ih x x T x ih x U x ih x U x ih x T x ih x
11 r19.26 x T x ih x U x ih x U x ih x T x ih x x T x ih x U x ih x x U x ih x T x ih x
12 10 11 bitr2di T HrmOp U HrmOp x T x ih x U x ih x x U x ih x T x ih x x T x ih x = U x ih x
13 hmoplin T HrmOp T LinOp
14 hmoplin U HrmOp U LinOp
15 lnopeq T LinOp U LinOp x T x ih x = U x ih x T = U
16 13 14 15 syl2an T HrmOp U HrmOp x T x ih x = U x ih x T = U
17 4 12 16 3bitrd T HrmOp U HrmOp T op U U op T T = U