Metamath Proof Explorer


Theorem leoptri

Description: The positive operator ordering relation satisfies trichotomy. Exercise 1(iii) of Retherford p. 49. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoptri THrmOpUHrmOpTopUUopTT=U

Proof

Step Hyp Ref Expression
1 leop2 THrmOpUHrmOpTopUxTxihxUxihx
2 leop2 UHrmOpTHrmOpUopTxUxihxTxihx
3 2 ancoms THrmOpUHrmOpUopTxUxihxTxihx
4 1 3 anbi12d THrmOpUHrmOpTopUUopTxTxihxUxihxxUxihxTxihx
5 hmopre THrmOpxTxihx
6 5 adantlr THrmOpUHrmOpxTxihx
7 hmopre UHrmOpxUxihx
8 7 adantll THrmOpUHrmOpxUxihx
9 6 8 letri3d THrmOpUHrmOpxTxihx=UxihxTxihxUxihxUxihxTxihx
10 9 ralbidva THrmOpUHrmOpxTxihx=UxihxxTxihxUxihxUxihxTxihx
11 r19.26 xTxihxUxihxUxihxTxihxxTxihxUxihxxUxihxTxihx
12 10 11 bitr2di THrmOpUHrmOpxTxihxUxihxxUxihxTxihxxTxihx=Uxihx
13 hmoplin THrmOpTLinOp
14 hmoplin UHrmOpULinOp
15 lnopeq TLinOpULinOpxTxihx=UxihxT=U
16 13 14 15 syl2an THrmOpUHrmOpxTxihx=UxihxT=U
17 4 12 16 3bitrd THrmOpUHrmOpTopUUopTT=U