Metamath Proof Explorer


Theorem lgricngricex

Description: There are two different locally isomorphic graphs which are not isomorphic. (Contributed by AV, 23-Nov-2025)

Ref Expression
Assertion lgricngricex 𝑔 ( 𝑔𝑙𝑔𝑟 ∧ ¬ 𝑔𝑔𝑟 )

Proof

Step Hyp Ref Expression
1 gpg5grlic ( 5 gPetersenGr 1 ) ≃𝑙𝑔𝑟 ( 5 gPetersenGr 2 )
2 gpg5ngric ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 )
3 ovex ( 5 gPetersenGr 1 ) ∈ V
4 ovex ( 5 gPetersenGr 2 ) ∈ V
5 breq12 ( ( 𝑔 = ( 5 gPetersenGr 1 ) ∧ = ( 5 gPetersenGr 2 ) ) → ( 𝑔𝑙𝑔𝑟 ↔ ( 5 gPetersenGr 1 ) ≃𝑙𝑔𝑟 ( 5 gPetersenGr 2 ) ) )
6 breq12 ( ( 𝑔 = ( 5 gPetersenGr 1 ) ∧ = ( 5 gPetersenGr 2 ) ) → ( 𝑔𝑔𝑟 ↔ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) )
7 6 notbid ( ( 𝑔 = ( 5 gPetersenGr 1 ) ∧ = ( 5 gPetersenGr 2 ) ) → ( ¬ 𝑔𝑔𝑟 ↔ ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) )
8 5 7 anbi12d ( ( 𝑔 = ( 5 gPetersenGr 1 ) ∧ = ( 5 gPetersenGr 2 ) ) → ( ( 𝑔𝑙𝑔𝑟 ∧ ¬ 𝑔𝑔𝑟 ) ↔ ( ( 5 gPetersenGr 1 ) ≃𝑙𝑔𝑟 ( 5 gPetersenGr 2 ) ∧ ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) ) )
9 3 4 8 spc2ev ( ( ( 5 gPetersenGr 1 ) ≃𝑙𝑔𝑟 ( 5 gPetersenGr 2 ) ∧ ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) → ∃ 𝑔 ( 𝑔𝑙𝑔𝑟 ∧ ¬ 𝑔𝑔𝑟 ) )
10 1 2 9 mp2an 𝑔 ( 𝑔𝑙𝑔𝑟 ∧ ¬ 𝑔𝑔𝑟 )