| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg5grlic |
⊢ ( 5 gPetersenGr 1 ) ≃𝑙𝑔𝑟 ( 5 gPetersenGr 2 ) |
| 2 |
|
gpg5ngric |
⊢ ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) |
| 3 |
|
ovex |
⊢ ( 5 gPetersenGr 1 ) ∈ V |
| 4 |
|
ovex |
⊢ ( 5 gPetersenGr 2 ) ∈ V |
| 5 |
|
breq12 |
⊢ ( ( 𝑔 = ( 5 gPetersenGr 1 ) ∧ ℎ = ( 5 gPetersenGr 2 ) ) → ( 𝑔 ≃𝑙𝑔𝑟 ℎ ↔ ( 5 gPetersenGr 1 ) ≃𝑙𝑔𝑟 ( 5 gPetersenGr 2 ) ) ) |
| 6 |
|
breq12 |
⊢ ( ( 𝑔 = ( 5 gPetersenGr 1 ) ∧ ℎ = ( 5 gPetersenGr 2 ) ) → ( 𝑔 ≃𝑔𝑟 ℎ ↔ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) ) |
| 7 |
6
|
notbid |
⊢ ( ( 𝑔 = ( 5 gPetersenGr 1 ) ∧ ℎ = ( 5 gPetersenGr 2 ) ) → ( ¬ 𝑔 ≃𝑔𝑟 ℎ ↔ ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) ) |
| 8 |
5 7
|
anbi12d |
⊢ ( ( 𝑔 = ( 5 gPetersenGr 1 ) ∧ ℎ = ( 5 gPetersenGr 2 ) ) → ( ( 𝑔 ≃𝑙𝑔𝑟 ℎ ∧ ¬ 𝑔 ≃𝑔𝑟 ℎ ) ↔ ( ( 5 gPetersenGr 1 ) ≃𝑙𝑔𝑟 ( 5 gPetersenGr 2 ) ∧ ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) ) ) |
| 9 |
3 4 8
|
spc2ev |
⊢ ( ( ( 5 gPetersenGr 1 ) ≃𝑙𝑔𝑟 ( 5 gPetersenGr 2 ) ∧ ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) → ∃ 𝑔 ∃ ℎ ( 𝑔 ≃𝑙𝑔𝑟 ℎ ∧ ¬ 𝑔 ≃𝑔𝑟 ℎ ) ) |
| 10 |
1 2 9
|
mp2an |
⊢ ∃ 𝑔 ∃ ℎ ( 𝑔 ≃𝑙𝑔𝑟 ℎ ∧ ¬ 𝑔 ≃𝑔𝑟 ℎ ) |