Metamath Proof Explorer


Theorem gpg5ngric

Description: The two generalized Petersen graphs G(5,K) of order 10, which are the Petersen graph G(5,2) and the 5-prism G(5,1), are not isomorphic. (Contributed by AV, 22-Nov-2025)

Ref Expression
Assertion gpg5ngric ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 )

Proof

Step Hyp Ref Expression
1 5eluz3 5 ∈ ( ℤ ‘ 3 )
2 1elfzo1ceilhalf1 ( 5 ∈ ( ℤ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
3 1 2 ax-mp 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
4 1 3 pm3.2i ( 5 ∈ ( ℤ ‘ 3 ) ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
5 gpgusgra ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( 5 gPetersenGr 1 ) ∈ USGraph )
6 usgruspgr ( ( 5 gPetersenGr 1 ) ∈ USGraph → ( 5 gPetersenGr 1 ) ∈ USPGraph )
7 4 5 6 mp2b ( 5 gPetersenGr 1 ) ∈ USPGraph
8 pglem 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
9 1 8 pm3.2i ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
10 gpgusgra ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( 5 gPetersenGr 2 ) ∈ USGraph )
11 usgruspgr ( ( 5 gPetersenGr 2 ) ∈ USGraph → ( 5 gPetersenGr 2 ) ∈ USPGraph )
12 9 10 11 mp2b ( 5 gPetersenGr 2 ) ∈ USPGraph
13 7 12 pm3.2i ( ( 5 gPetersenGr 1 ) ∈ USPGraph ∧ ( 5 gPetersenGr 2 ) ∈ USPGraph )
14 gpgprismgr4cyclex ( 5 ∈ ( ℤ ‘ 3 ) → ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) )
15 1 14 ax-mp 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 )
16 pg4cyclnex ¬ ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 )
17 15 16 pm3.2i ( ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ∧ ¬ ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) )
18 cycldlenngric ( ( ( 5 gPetersenGr 1 ) ∈ USPGraph ∧ ( 5 gPetersenGr 2 ) ∈ USPGraph ) → ( ( ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ∧ ¬ ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ) → ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) )
19 13 17 18 mp2 ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 )