| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5eluz3 |
⊢ 5 ∈ ( ℤ≥ ‘ 3 ) |
| 2 |
|
1elfzo1ceilhalf1 |
⊢ ( 5 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 4 |
1 3
|
pm3.2i |
⊢ ( 5 ∈ ( ℤ≥ ‘ 3 ) ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
| 5 |
|
gpgusgra |
⊢ ( ( 5 ∈ ( ℤ≥ ‘ 3 ) ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( 5 gPetersenGr 1 ) ∈ USGraph ) |
| 6 |
|
usgruspgr |
⊢ ( ( 5 gPetersenGr 1 ) ∈ USGraph → ( 5 gPetersenGr 1 ) ∈ USPGraph ) |
| 7 |
4 5 6
|
mp2b |
⊢ ( 5 gPetersenGr 1 ) ∈ USPGraph |
| 8 |
|
pglem |
⊢ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 9 |
1 8
|
pm3.2i |
⊢ ( 5 ∈ ( ℤ≥ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
| 10 |
|
gpgusgra |
⊢ ( ( 5 ∈ ( ℤ≥ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( 5 gPetersenGr 2 ) ∈ USGraph ) |
| 11 |
|
usgruspgr |
⊢ ( ( 5 gPetersenGr 2 ) ∈ USGraph → ( 5 gPetersenGr 2 ) ∈ USPGraph ) |
| 12 |
9 10 11
|
mp2b |
⊢ ( 5 gPetersenGr 2 ) ∈ USPGraph |
| 13 |
7 12
|
pm3.2i |
⊢ ( ( 5 gPetersenGr 1 ) ∈ USPGraph ∧ ( 5 gPetersenGr 2 ) ∈ USPGraph ) |
| 14 |
|
gpgprismgr4cyclex |
⊢ ( 5 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ) |
| 15 |
1 14
|
ax-mp |
⊢ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) |
| 16 |
|
pg4cyclnex |
⊢ ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) |
| 17 |
15 16
|
pm3.2i |
⊢ ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ∧ ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ) |
| 18 |
|
cycldlenngric |
⊢ ( ( ( 5 gPetersenGr 1 ) ∈ USPGraph ∧ ( 5 gPetersenGr 2 ) ∈ USPGraph ) → ( ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 1 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ∧ ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ) → ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) ) ) |
| 19 |
13 17 18
|
mp2 |
⊢ ¬ ( 5 gPetersenGr 1 ) ≃𝑔𝑟 ( 5 gPetersenGr 2 ) |