| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 5 gPetersenGr 2 ) = ( 5 gPetersenGr 2 ) |
| 2 |
1
|
pgn4cyclex |
⊢ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 → ( ♯ ‘ 𝑓 ) ≠ 4 ) |
| 3 |
2
|
imori |
⊢ ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) |
| 4 |
3
|
gen2 |
⊢ ∀ 𝑝 ∀ 𝑓 ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) |
| 5 |
|
2nexaln |
⊢ ( ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ∀ 𝑝 ∀ 𝑓 ¬ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ) |
| 6 |
|
ianor |
⊢ ( ¬ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ¬ ( ♯ ‘ 𝑓 ) = 4 ) ) |
| 7 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑓 ) ≠ 4 ↔ ¬ ( ♯ ‘ 𝑓 ) = 4 ) |
| 8 |
7
|
bicomi |
⊢ ( ¬ ( ♯ ‘ 𝑓 ) = 4 ↔ ( ♯ ‘ 𝑓 ) ≠ 4 ) |
| 9 |
8
|
orbi2i |
⊢ ( ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ¬ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) ) |
| 10 |
6 9
|
bitri |
⊢ ( ¬ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) ) |
| 11 |
10
|
2albii |
⊢ ( ∀ 𝑝 ∀ 𝑓 ¬ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ∀ 𝑝 ∀ 𝑓 ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) ) |
| 12 |
5 11
|
bitri |
⊢ ( ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ∀ 𝑝 ∀ 𝑓 ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) ) |
| 13 |
4 12
|
mpbir |
⊢ ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) |