Metamath Proof Explorer


Theorem pg4cyclnex

Description: In the Petersen graph G(5,2), there is no cycle of length 4. (Contributed by AV, 22-Nov-2025)

Ref Expression
Assertion pg4cyclnex ¬ ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 )

Proof

Step Hyp Ref Expression
1 eqid ( 5 gPetersenGr 2 ) = ( 5 gPetersenGr 2 )
2 1 pgn4cyclex ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 → ( ♯ ‘ 𝑓 ) ≠ 4 )
3 2 imori ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 )
4 3 gen2 𝑝𝑓 ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 )
5 2nexaln ( ¬ ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ∀ 𝑝𝑓 ¬ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) )
6 ianor ( ¬ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ¬ ( ♯ ‘ 𝑓 ) = 4 ) )
7 df-ne ( ( ♯ ‘ 𝑓 ) ≠ 4 ↔ ¬ ( ♯ ‘ 𝑓 ) = 4 )
8 7 bicomi ( ¬ ( ♯ ‘ 𝑓 ) = 4 ↔ ( ♯ ‘ 𝑓 ) ≠ 4 )
9 8 orbi2i ( ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ¬ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) )
10 6 9 bitri ( ¬ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) )
11 10 2albii ( ∀ 𝑝𝑓 ¬ ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ∀ 𝑝𝑓 ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) )
12 5 11 bitri ( ¬ ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 ) ↔ ∀ 𝑝𝑓 ( ¬ 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∨ ( ♯ ‘ 𝑓 ) ≠ 4 ) )
13 4 12 mpbir ¬ ∃ 𝑝𝑓 ( 𝑓 ( Cycles ‘ ( 5 gPetersenGr 2 ) ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 4 )