| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( 5 gPetersenGr 2 ) = ( 5 gPetersenGr 2 ) |
| 2 |
1
|
pgn4cyclex |
|- ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p -> ( # ` f ) =/= 4 ) |
| 3 |
2
|
imori |
|- ( -. f ( Cycles ` ( 5 gPetersenGr 2 ) ) p \/ ( # ` f ) =/= 4 ) |
| 4 |
3
|
gen2 |
|- A. p A. f ( -. f ( Cycles ` ( 5 gPetersenGr 2 ) ) p \/ ( # ` f ) =/= 4 ) |
| 5 |
|
2nexaln |
|- ( -. E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) <-> A. p A. f -. ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) ) |
| 6 |
|
ianor |
|- ( -. ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) <-> ( -. f ( Cycles ` ( 5 gPetersenGr 2 ) ) p \/ -. ( # ` f ) = 4 ) ) |
| 7 |
|
df-ne |
|- ( ( # ` f ) =/= 4 <-> -. ( # ` f ) = 4 ) |
| 8 |
7
|
bicomi |
|- ( -. ( # ` f ) = 4 <-> ( # ` f ) =/= 4 ) |
| 9 |
8
|
orbi2i |
|- ( ( -. f ( Cycles ` ( 5 gPetersenGr 2 ) ) p \/ -. ( # ` f ) = 4 ) <-> ( -. f ( Cycles ` ( 5 gPetersenGr 2 ) ) p \/ ( # ` f ) =/= 4 ) ) |
| 10 |
6 9
|
bitri |
|- ( -. ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) <-> ( -. f ( Cycles ` ( 5 gPetersenGr 2 ) ) p \/ ( # ` f ) =/= 4 ) ) |
| 11 |
10
|
2albii |
|- ( A. p A. f -. ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) <-> A. p A. f ( -. f ( Cycles ` ( 5 gPetersenGr 2 ) ) p \/ ( # ` f ) =/= 4 ) ) |
| 12 |
5 11
|
bitri |
|- ( -. E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) <-> A. p A. f ( -. f ( Cycles ` ( 5 gPetersenGr 2 ) ) p \/ ( # ` f ) =/= 4 ) ) |
| 13 |
4 12
|
mpbir |
|- -. E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) |