| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 2 |
|
1elfzo1ceilhalf1 |
|- ( 5 e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 3 |
1 2
|
ax-mp |
|- 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 4 |
1 3
|
pm3.2i |
|- ( 5 e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 5 |
|
gpgusgra |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr 1 ) e. USGraph ) |
| 6 |
|
usgruspgr |
|- ( ( 5 gPetersenGr 1 ) e. USGraph -> ( 5 gPetersenGr 1 ) e. USPGraph ) |
| 7 |
4 5 6
|
mp2b |
|- ( 5 gPetersenGr 1 ) e. USPGraph |
| 8 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 9 |
1 8
|
pm3.2i |
|- ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 10 |
|
gpgusgra |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr 2 ) e. USGraph ) |
| 11 |
|
usgruspgr |
|- ( ( 5 gPetersenGr 2 ) e. USGraph -> ( 5 gPetersenGr 2 ) e. USPGraph ) |
| 12 |
9 10 11
|
mp2b |
|- ( 5 gPetersenGr 2 ) e. USPGraph |
| 13 |
7 12
|
pm3.2i |
|- ( ( 5 gPetersenGr 1 ) e. USPGraph /\ ( 5 gPetersenGr 2 ) e. USPGraph ) |
| 14 |
|
gpgprismgr4cyclex |
|- ( 5 e. ( ZZ>= ` 3 ) -> E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) ) |
| 15 |
1 14
|
ax-mp |
|- E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) |
| 16 |
|
pg4cyclnex |
|- -. E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) |
| 17 |
15 16
|
pm3.2i |
|- ( E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) /\ -. E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) ) |
| 18 |
|
cycldlenngric |
|- ( ( ( 5 gPetersenGr 1 ) e. USPGraph /\ ( 5 gPetersenGr 2 ) e. USPGraph ) -> ( ( E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 1 ) ) p /\ ( # ` f ) = 4 ) /\ -. E. p E. f ( f ( Cycles ` ( 5 gPetersenGr 2 ) ) p /\ ( # ` f ) = 4 ) ) -> -. ( 5 gPetersenGr 1 ) ~=gr ( 5 gPetersenGr 2 ) ) ) |
| 19 |
13 17 18
|
mp2 |
|- -. ( 5 gPetersenGr 1 ) ~=gr ( 5 gPetersenGr 2 ) |