| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpg5grlic |
|- ( 5 gPetersenGr 1 ) ~=lgr ( 5 gPetersenGr 2 ) |
| 2 |
|
gpg5ngric |
|- -. ( 5 gPetersenGr 1 ) ~=gr ( 5 gPetersenGr 2 ) |
| 3 |
|
ovex |
|- ( 5 gPetersenGr 1 ) e. _V |
| 4 |
|
ovex |
|- ( 5 gPetersenGr 2 ) e. _V |
| 5 |
|
breq12 |
|- ( ( g = ( 5 gPetersenGr 1 ) /\ h = ( 5 gPetersenGr 2 ) ) -> ( g ~=lgr h <-> ( 5 gPetersenGr 1 ) ~=lgr ( 5 gPetersenGr 2 ) ) ) |
| 6 |
|
breq12 |
|- ( ( g = ( 5 gPetersenGr 1 ) /\ h = ( 5 gPetersenGr 2 ) ) -> ( g ~=gr h <-> ( 5 gPetersenGr 1 ) ~=gr ( 5 gPetersenGr 2 ) ) ) |
| 7 |
6
|
notbid |
|- ( ( g = ( 5 gPetersenGr 1 ) /\ h = ( 5 gPetersenGr 2 ) ) -> ( -. g ~=gr h <-> -. ( 5 gPetersenGr 1 ) ~=gr ( 5 gPetersenGr 2 ) ) ) |
| 8 |
5 7
|
anbi12d |
|- ( ( g = ( 5 gPetersenGr 1 ) /\ h = ( 5 gPetersenGr 2 ) ) -> ( ( g ~=lgr h /\ -. g ~=gr h ) <-> ( ( 5 gPetersenGr 1 ) ~=lgr ( 5 gPetersenGr 2 ) /\ -. ( 5 gPetersenGr 1 ) ~=gr ( 5 gPetersenGr 2 ) ) ) ) |
| 9 |
3 4 8
|
spc2ev |
|- ( ( ( 5 gPetersenGr 1 ) ~=lgr ( 5 gPetersenGr 2 ) /\ -. ( 5 gPetersenGr 1 ) ~=gr ( 5 gPetersenGr 2 ) ) -> E. g E. h ( g ~=lgr h /\ -. g ~=gr h ) ) |
| 10 |
1 2 9
|
mp2an |
|- E. g E. h ( g ~=lgr h /\ -. g ~=gr h ) |