| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c0ex |
|- 0 e. _V |
| 2 |
|
eleq1 |
|- ( x = 0 -> ( x e. ( 0 ..^ 5 ) <-> 0 e. ( 0 ..^ 5 ) ) ) |
| 3 |
|
opeq2 |
|- ( x = 0 -> <. 0 , x >. = <. 0 , 0 >. ) |
| 4 |
|
oveq1 |
|- ( x = 0 -> ( x + 1 ) = ( 0 + 1 ) ) |
| 5 |
4
|
oveq1d |
|- ( x = 0 -> ( ( x + 1 ) mod 5 ) = ( ( 0 + 1 ) mod 5 ) ) |
| 6 |
5
|
opeq2d |
|- ( x = 0 -> <. 0 , ( ( x + 1 ) mod 5 ) >. = <. 0 , ( ( 0 + 1 ) mod 5 ) >. ) |
| 7 |
3 6
|
preq12d |
|- ( x = 0 -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } = { <. 0 , 0 >. , <. 0 , ( ( 0 + 1 ) mod 5 ) >. } ) |
| 8 |
7
|
eqeq2d |
|- ( x = 0 -> ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } <-> { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 0 , ( ( 0 + 1 ) mod 5 ) >. } ) ) |
| 9 |
|
opeq2 |
|- ( x = 0 -> <. 1 , x >. = <. 1 , 0 >. ) |
| 10 |
3 9
|
preq12d |
|- ( x = 0 -> { <. 0 , x >. , <. 1 , x >. } = { <. 0 , 0 >. , <. 1 , 0 >. } ) |
| 11 |
10
|
eqeq2d |
|- ( x = 0 -> ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } <-> { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } ) ) |
| 12 |
5
|
opeq2d |
|- ( x = 0 -> <. 1 , ( ( x + 1 ) mod 5 ) >. = <. 1 , ( ( 0 + 1 ) mod 5 ) >. ) |
| 13 |
9 12
|
preq12d |
|- ( x = 0 -> { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } = { <. 1 , 0 >. , <. 1 , ( ( 0 + 1 ) mod 5 ) >. } ) |
| 14 |
13
|
eqeq2d |
|- ( x = 0 -> ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } <-> { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , 0 >. , <. 1 , ( ( 0 + 1 ) mod 5 ) >. } ) ) |
| 15 |
8 11 14
|
3orbi123d |
|- ( x = 0 -> ( ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) <-> ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 0 , ( ( 0 + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , 0 >. , <. 1 , ( ( 0 + 1 ) mod 5 ) >. } ) ) ) |
| 16 |
2 15
|
anbi12d |
|- ( x = 0 -> ( ( x e. ( 0 ..^ 5 ) /\ ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) <-> ( 0 e. ( 0 ..^ 5 ) /\ ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 0 , ( ( 0 + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , 0 >. , <. 1 , ( ( 0 + 1 ) mod 5 ) >. } ) ) ) ) |
| 17 |
|
5nn |
|- 5 e. NN |
| 18 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 5 ) <-> 5 e. NN ) |
| 19 |
17 18
|
mpbir |
|- 0 e. ( 0 ..^ 5 ) |
| 20 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 21 |
20
|
oveq1i |
|- ( ( 0 + 1 ) mod 5 ) = ( 1 mod 5 ) |
| 22 |
|
5re |
|- 5 e. RR |
| 23 |
|
1lt5 |
|- 1 < 5 |
| 24 |
|
1mod |
|- ( ( 5 e. RR /\ 1 < 5 ) -> ( 1 mod 5 ) = 1 ) |
| 25 |
22 23 24
|
mp2an |
|- ( 1 mod 5 ) = 1 |
| 26 |
21 25
|
eqtr2i |
|- 1 = ( ( 0 + 1 ) mod 5 ) |
| 27 |
26
|
opeq2i |
|- <. 1 , 1 >. = <. 1 , ( ( 0 + 1 ) mod 5 ) >. |
| 28 |
27
|
preq2i |
|- { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , 0 >. , <. 1 , ( ( 0 + 1 ) mod 5 ) >. } |
| 29 |
28
|
3mix3i |
|- ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 0 , ( ( 0 + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , 0 >. , <. 1 , ( ( 0 + 1 ) mod 5 ) >. } ) |
| 30 |
19 29
|
pm3.2i |
|- ( 0 e. ( 0 ..^ 5 ) /\ ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 0 , ( ( 0 + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , 0 >. , <. 1 , ( ( 0 + 1 ) mod 5 ) >. } ) ) |
| 31 |
1 16 30
|
ceqsexv2d |
|- E. x ( x e. ( 0 ..^ 5 ) /\ ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) |
| 32 |
|
df-rex |
|- ( E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) <-> E. x ( x e. ( 0 ..^ 5 ) /\ ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) ) |
| 33 |
31 32
|
mpbir |
|- E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) |
| 34 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 35 |
|
2z |
|- 2 e. ZZ |
| 36 |
22
|
rehalfcli |
|- ( 5 / 2 ) e. RR |
| 37 |
|
ceilcl |
|- ( ( 5 / 2 ) e. RR -> ( |^ ` ( 5 / 2 ) ) e. ZZ ) |
| 38 |
36 37
|
ax-mp |
|- ( |^ ` ( 5 / 2 ) ) e. ZZ |
| 39 |
|
2ltceilhalf |
|- ( 5 e. ( ZZ>= ` 3 ) -> 2 <_ ( |^ ` ( 5 / 2 ) ) ) |
| 40 |
34 39
|
ax-mp |
|- 2 <_ ( |^ ` ( 5 / 2 ) ) |
| 41 |
|
eluz2 |
|- ( ( |^ ` ( 5 / 2 ) ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( |^ ` ( 5 / 2 ) ) e. ZZ /\ 2 <_ ( |^ ` ( 5 / 2 ) ) ) ) |
| 42 |
35 38 40 41
|
mpbir3an |
|- ( |^ ` ( 5 / 2 ) ) e. ( ZZ>= ` 2 ) |
| 43 |
|
fzo1lb |
|- ( 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) <-> ( |^ ` ( 5 / 2 ) ) e. ( ZZ>= ` 2 ) ) |
| 44 |
42 43
|
mpbir |
|- 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 45 |
|
eqid |
|- ( 0 ..^ 5 ) = ( 0 ..^ 5 ) |
| 46 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 47 |
|
eqid |
|- ( 5 gPetersenGr 1 ) = ( 5 gPetersenGr 1 ) |
| 48 |
|
eqid |
|- ( Edg ` ( 5 gPetersenGr 1 ) ) = ( Edg ` ( 5 gPetersenGr 1 ) ) |
| 49 |
45 46 47 48
|
gpgedgel |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) ) |
| 50 |
34 44 49
|
mp2an |
|- ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod 5 ) >. } ) ) |
| 51 |
33 50
|
mpbir |
|- { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) |
| 52 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 53 |
|
opex |
|- <. 1 , 0 >. e. _V |
| 54 |
|
opex |
|- <. 1 , 1 >. e. _V |
| 55 |
53 54
|
pm3.2i |
|- ( <. 1 , 0 >. e. _V /\ <. 1 , 1 >. e. _V ) |
| 56 |
|
opex |
|- <. 0 , x >. e. _V |
| 57 |
|
opex |
|- <. 0 , ( ( x + 1 ) mod 5 ) >. e. _V |
| 58 |
56 57
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod 5 ) >. e. _V ) |
| 59 |
55 58
|
pm3.2i |
|- ( ( <. 1 , 0 >. e. _V /\ <. 1 , 1 >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod 5 ) >. e. _V ) ) |
| 60 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 61 |
60
|
orci |
|- ( 1 =/= 0 \/ 0 =/= x ) |
| 62 |
|
1ex |
|- 1 e. _V |
| 63 |
62 1
|
opthne |
|- ( <. 1 , 0 >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ 0 =/= x ) ) |
| 64 |
61 63
|
mpbir |
|- <. 1 , 0 >. =/= <. 0 , x >. |
| 65 |
60
|
orci |
|- ( 1 =/= 0 \/ 0 =/= ( ( x + 1 ) mod 5 ) ) |
| 66 |
62 1
|
opthne |
|- ( <. 1 , 0 >. =/= <. 0 , ( ( x + 1 ) mod 5 ) >. <-> ( 1 =/= 0 \/ 0 =/= ( ( x + 1 ) mod 5 ) ) ) |
| 67 |
65 66
|
mpbir |
|- <. 1 , 0 >. =/= <. 0 , ( ( x + 1 ) mod 5 ) >. |
| 68 |
64 67
|
pm3.2i |
|- ( <. 1 , 0 >. =/= <. 0 , x >. /\ <. 1 , 0 >. =/= <. 0 , ( ( x + 1 ) mod 5 ) >. ) |
| 69 |
68
|
a1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 0 >. =/= <. 0 , x >. /\ <. 1 , 0 >. =/= <. 0 , ( ( x + 1 ) mod 5 ) >. ) ) |
| 70 |
69
|
orcd |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( ( <. 1 , 0 >. =/= <. 0 , x >. /\ <. 1 , 0 >. =/= <. 0 , ( ( x + 1 ) mod 5 ) >. ) \/ ( <. 1 , 1 >. =/= <. 0 , x >. /\ <. 1 , 1 >. =/= <. 0 , ( ( x + 1 ) mod 5 ) >. ) ) ) |
| 71 |
|
prneimg |
|- ( ( ( <. 1 , 0 >. e. _V /\ <. 1 , 1 >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 0 , ( ( x + 1 ) mod 5 ) >. e. _V ) ) -> ( ( ( <. 1 , 0 >. =/= <. 0 , x >. /\ <. 1 , 0 >. =/= <. 0 , ( ( x + 1 ) mod 5 ) >. ) \/ ( <. 1 , 1 >. =/= <. 0 , x >. /\ <. 1 , 1 >. =/= <. 0 , ( ( x + 1 ) mod 5 ) >. ) ) -> { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } ) ) |
| 72 |
59 70 71
|
mpsyl |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } ) |
| 73 |
64
|
orci |
|- ( <. 1 , 0 >. =/= <. 0 , x >. \/ <. 1 , 1 >. =/= <. 1 , x >. ) |
| 74 |
73
|
a1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 0 >. =/= <. 0 , x >. \/ <. 1 , 1 >. =/= <. 1 , x >. ) ) |
| 75 |
60
|
orci |
|- ( 1 =/= 0 \/ 1 =/= x ) |
| 76 |
62 62
|
opthne |
|- ( <. 1 , 1 >. =/= <. 0 , x >. <-> ( 1 =/= 0 \/ 1 =/= x ) ) |
| 77 |
75 76
|
mpbir |
|- <. 1 , 1 >. =/= <. 0 , x >. |
| 78 |
77
|
olci |
|- ( <. 1 , 0 >. =/= <. 1 , x >. \/ <. 1 , 1 >. =/= <. 0 , x >. ) |
| 79 |
78
|
a1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 0 >. =/= <. 1 , x >. \/ <. 1 , 1 >. =/= <. 0 , x >. ) ) |
| 80 |
|
opex |
|- <. 1 , x >. e. _V |
| 81 |
56 80
|
pm3.2i |
|- ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) |
| 82 |
55 81
|
pm3.2i |
|- ( ( <. 1 , 0 >. e. _V /\ <. 1 , 1 >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) |
| 83 |
|
prneimg2 |
|- ( ( ( <. 1 , 0 >. e. _V /\ <. 1 , 1 >. e. _V ) /\ ( <. 0 , x >. e. _V /\ <. 1 , x >. e. _V ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 1 , 0 >. =/= <. 0 , x >. \/ <. 1 , 1 >. =/= <. 1 , x >. ) /\ ( <. 1 , 0 >. =/= <. 1 , x >. \/ <. 1 , 1 >. =/= <. 0 , x >. ) ) ) ) |
| 84 |
82 83
|
mp1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> ( ( <. 1 , 0 >. =/= <. 0 , x >. \/ <. 1 , 1 >. =/= <. 1 , x >. ) /\ ( <. 1 , 0 >. =/= <. 1 , x >. \/ <. 1 , 1 >. =/= <. 0 , x >. ) ) ) ) |
| 85 |
74 79 84
|
mpbir2and |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } ) |
| 86 |
|
1ne2 |
|- 1 =/= 2 |
| 87 |
86
|
a1i |
|- ( ( 0 = x /\ ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) ) -> 1 =/= 2 ) |
| 88 |
|
2cn |
|- 2 e. CC |
| 89 |
88
|
addlidi |
|- ( 0 + 2 ) = 2 |
| 90 |
89
|
oveq1i |
|- ( ( 0 + 2 ) mod 5 ) = ( 2 mod 5 ) |
| 91 |
|
2nn0 |
|- 2 e. NN0 |
| 92 |
|
2lt5 |
|- 2 < 5 |
| 93 |
|
elfzo0 |
|- ( 2 e. ( 0 ..^ 5 ) <-> ( 2 e. NN0 /\ 5 e. NN /\ 2 < 5 ) ) |
| 94 |
91 17 92 93
|
mpbir3an |
|- 2 e. ( 0 ..^ 5 ) |
| 95 |
|
zmodidfzoimp |
|- ( 2 e. ( 0 ..^ 5 ) -> ( 2 mod 5 ) = 2 ) |
| 96 |
94 95
|
ax-mp |
|- ( 2 mod 5 ) = 2 |
| 97 |
90 96
|
eqtr2i |
|- 2 = ( ( 0 + 2 ) mod 5 ) |
| 98 |
|
oveq1 |
|- ( 0 = x -> ( 0 + 2 ) = ( x + 2 ) ) |
| 99 |
98
|
oveq1d |
|- ( 0 = x -> ( ( 0 + 2 ) mod 5 ) = ( ( x + 2 ) mod 5 ) ) |
| 100 |
97 99
|
eqtrid |
|- ( 0 = x -> 2 = ( ( x + 2 ) mod 5 ) ) |
| 101 |
100
|
adantr |
|- ( ( 0 = x /\ ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) ) -> 2 = ( ( x + 2 ) mod 5 ) ) |
| 102 |
87 101
|
neeqtrd |
|- ( ( 0 = x /\ ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) ) -> 1 =/= ( ( x + 2 ) mod 5 ) ) |
| 103 |
102
|
olcd |
|- ( ( 0 = x /\ ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) ) -> ( 0 =/= x \/ 1 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 104 |
103
|
ex |
|- ( 0 = x -> ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( 0 =/= x \/ 1 =/= ( ( x + 2 ) mod 5 ) ) ) ) |
| 105 |
|
orc |
|- ( 0 =/= x -> ( 0 =/= x \/ 1 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 106 |
105
|
a1d |
|- ( 0 =/= x -> ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( 0 =/= x \/ 1 =/= ( ( x + 2 ) mod 5 ) ) ) ) |
| 107 |
104 106
|
pm2.61ine |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( 0 =/= x \/ 1 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 108 |
62 1
|
opthne |
|- ( <. 1 , 0 >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ 0 =/= x ) ) |
| 109 |
|
neirr |
|- -. 1 =/= 1 |
| 110 |
109
|
biorfi |
|- ( 0 =/= x <-> ( 1 =/= 1 \/ 0 =/= x ) ) |
| 111 |
108 110
|
bitr4i |
|- ( <. 1 , 0 >. =/= <. 1 , x >. <-> 0 =/= x ) |
| 112 |
111
|
a1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 0 >. =/= <. 1 , x >. <-> 0 =/= x ) ) |
| 113 |
62 62
|
opthne |
|- ( <. 1 , 1 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. <-> ( 1 =/= 1 \/ 1 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 114 |
109
|
biorfi |
|- ( 1 =/= ( ( x + 2 ) mod 5 ) <-> ( 1 =/= 1 \/ 1 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 115 |
113 114
|
bitr4i |
|- ( <. 1 , 1 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. <-> 1 =/= ( ( x + 2 ) mod 5 ) ) |
| 116 |
115
|
a1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 1 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. <-> 1 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 117 |
112 116
|
orbi12d |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( ( <. 1 , 0 >. =/= <. 1 , x >. \/ <. 1 , 1 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. ) <-> ( 0 =/= x \/ 1 =/= ( ( x + 2 ) mod 5 ) ) ) ) |
| 118 |
107 117
|
mpbird |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 0 >. =/= <. 1 , x >. \/ <. 1 , 1 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. ) ) |
| 119 |
|
0re |
|- 0 e. RR |
| 120 |
|
3pos |
|- 0 < 3 |
| 121 |
119 120
|
ltneii |
|- 0 =/= 3 |
| 122 |
121
|
a1i |
|- ( ( 1 = x /\ ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) ) -> 0 =/= 3 ) |
| 123 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
| 124 |
123
|
oveq1i |
|- ( ( 1 + 2 ) mod 5 ) = ( 3 mod 5 ) |
| 125 |
|
3nn0 |
|- 3 e. NN0 |
| 126 |
|
3lt5 |
|- 3 < 5 |
| 127 |
|
elfzo0 |
|- ( 3 e. ( 0 ..^ 5 ) <-> ( 3 e. NN0 /\ 5 e. NN /\ 3 < 5 ) ) |
| 128 |
125 17 126 127
|
mpbir3an |
|- 3 e. ( 0 ..^ 5 ) |
| 129 |
|
zmodidfzoimp |
|- ( 3 e. ( 0 ..^ 5 ) -> ( 3 mod 5 ) = 3 ) |
| 130 |
128 129
|
ax-mp |
|- ( 3 mod 5 ) = 3 |
| 131 |
124 130
|
eqtr2i |
|- 3 = ( ( 1 + 2 ) mod 5 ) |
| 132 |
|
oveq1 |
|- ( 1 = x -> ( 1 + 2 ) = ( x + 2 ) ) |
| 133 |
132
|
oveq1d |
|- ( 1 = x -> ( ( 1 + 2 ) mod 5 ) = ( ( x + 2 ) mod 5 ) ) |
| 134 |
131 133
|
eqtrid |
|- ( 1 = x -> 3 = ( ( x + 2 ) mod 5 ) ) |
| 135 |
134
|
adantr |
|- ( ( 1 = x /\ ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) ) -> 3 = ( ( x + 2 ) mod 5 ) ) |
| 136 |
122 135
|
neeqtrd |
|- ( ( 1 = x /\ ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) ) -> 0 =/= ( ( x + 2 ) mod 5 ) ) |
| 137 |
136
|
orcd |
|- ( ( 1 = x /\ ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) ) -> ( 0 =/= ( ( x + 2 ) mod 5 ) \/ 1 =/= x ) ) |
| 138 |
137
|
ex |
|- ( 1 = x -> ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( 0 =/= ( ( x + 2 ) mod 5 ) \/ 1 =/= x ) ) ) |
| 139 |
|
olc |
|- ( 1 =/= x -> ( 0 =/= ( ( x + 2 ) mod 5 ) \/ 1 =/= x ) ) |
| 140 |
139
|
a1d |
|- ( 1 =/= x -> ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( 0 =/= ( ( x + 2 ) mod 5 ) \/ 1 =/= x ) ) ) |
| 141 |
138 140
|
pm2.61ine |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( 0 =/= ( ( x + 2 ) mod 5 ) \/ 1 =/= x ) ) |
| 142 |
62 1
|
opthne |
|- ( <. 1 , 0 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. <-> ( 1 =/= 1 \/ 0 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 143 |
109
|
biorfi |
|- ( 0 =/= ( ( x + 2 ) mod 5 ) <-> ( 1 =/= 1 \/ 0 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 144 |
142 143
|
bitr4i |
|- ( <. 1 , 0 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. <-> 0 =/= ( ( x + 2 ) mod 5 ) ) |
| 145 |
144
|
a1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 0 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. <-> 0 =/= ( ( x + 2 ) mod 5 ) ) ) |
| 146 |
62 62
|
opthne |
|- ( <. 1 , 1 >. =/= <. 1 , x >. <-> ( 1 =/= 1 \/ 1 =/= x ) ) |
| 147 |
109
|
biorfi |
|- ( 1 =/= x <-> ( 1 =/= 1 \/ 1 =/= x ) ) |
| 148 |
146 147
|
bitr4i |
|- ( <. 1 , 1 >. =/= <. 1 , x >. <-> 1 =/= x ) |
| 149 |
148
|
a1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 1 >. =/= <. 1 , x >. <-> 1 =/= x ) ) |
| 150 |
145 149
|
orbi12d |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( ( <. 1 , 0 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. \/ <. 1 , 1 >. =/= <. 1 , x >. ) <-> ( 0 =/= ( ( x + 2 ) mod 5 ) \/ 1 =/= x ) ) ) |
| 151 |
141 150
|
mpbird |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( <. 1 , 0 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. \/ <. 1 , 1 >. =/= <. 1 , x >. ) ) |
| 152 |
|
opex |
|- <. 1 , ( ( x + 2 ) mod 5 ) >. e. _V |
| 153 |
80 152
|
pm3.2i |
|- ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + 2 ) mod 5 ) >. e. _V ) |
| 154 |
55 153
|
pm3.2i |
|- ( ( <. 1 , 0 >. e. _V /\ <. 1 , 1 >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + 2 ) mod 5 ) >. e. _V ) ) |
| 155 |
|
prneimg2 |
|- ( ( ( <. 1 , 0 >. e. _V /\ <. 1 , 1 >. e. _V ) /\ ( <. 1 , x >. e. _V /\ <. 1 , ( ( x + 2 ) mod 5 ) >. e. _V ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } <-> ( ( <. 1 , 0 >. =/= <. 1 , x >. \/ <. 1 , 1 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. ) /\ ( <. 1 , 0 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. \/ <. 1 , 1 >. =/= <. 1 , x >. ) ) ) ) |
| 156 |
154 155
|
mp1i |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } <-> ( ( <. 1 , 0 >. =/= <. 1 , x >. \/ <. 1 , 1 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. ) /\ ( <. 1 , 0 >. =/= <. 1 , ( ( x + 2 ) mod 5 ) >. \/ <. 1 , 1 >. =/= <. 1 , x >. ) ) ) ) |
| 157 |
118 151 156
|
mpbir2and |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) |
| 158 |
72 85 157
|
3jca |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ x e. ( 0 ..^ 5 ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 159 |
158
|
ralrimiva |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> A. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 160 |
|
ralnex |
|- ( A. x e. ( 0 ..^ 5 ) -. ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) <-> -. E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 161 |
|
3ioran |
|- ( -. ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) <-> ( -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } /\ -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 162 |
|
df-ne |
|- ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } <-> -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } ) |
| 163 |
|
df-ne |
|- ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } <-> -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } ) |
| 164 |
|
df-ne |
|- ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } <-> -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) |
| 165 |
162 163 164
|
3anbi123i |
|- ( ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) <-> ( -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } /\ -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } /\ -. { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 166 |
161 165
|
bitr4i |
|- ( -. ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) <-> ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 167 |
166
|
ralbii |
|- ( A. x e. ( 0 ..^ 5 ) -. ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) <-> A. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 168 |
160 167
|
bitr3i |
|- ( -. E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) <-> A. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 0 , x >. , <. 1 , x >. } /\ { <. 1 , 0 >. , <. 1 , 1 >. } =/= { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 169 |
159 168
|
sylibr |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> -. E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) |
| 170 |
|
eqid |
|- ( 5 gPetersenGr 2 ) = ( 5 gPetersenGr 2 ) |
| 171 |
|
eqid |
|- ( Edg ` ( 5 gPetersenGr 2 ) ) = ( Edg ` ( 5 gPetersenGr 2 ) ) |
| 172 |
45 46 170 171
|
gpgedgel |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) <-> E. x e. ( 0 ..^ 5 ) ( { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod 5 ) >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 1 , 0 >. , <. 1 , 1 >. } = { <. 1 , x >. , <. 1 , ( ( x + 2 ) mod 5 ) >. } ) ) ) |
| 173 |
169 172
|
mtbird |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> -. { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) ) |
| 174 |
34 52 173
|
mp2an |
|- -. { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 2 ) ) |
| 175 |
174
|
nelir |
|- { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) |
| 176 |
51 175
|
pm3.2i |
|- ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) |