| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( g = ( 5 gPetersenGr 1 ) -> ( g GraphLocIso h ) = ( ( 5 gPetersenGr 1 ) GraphLocIso h ) ) |
| 2 |
|
fveq2 |
|- ( g = ( 5 gPetersenGr 1 ) -> ( Vtx ` g ) = ( Vtx ` ( 5 gPetersenGr 1 ) ) ) |
| 3 |
|
fveq2 |
|- ( g = ( 5 gPetersenGr 1 ) -> ( Edg ` g ) = ( Edg ` ( 5 gPetersenGr 1 ) ) ) |
| 4 |
3
|
eleq2d |
|- ( g = ( 5 gPetersenGr 1 ) -> ( { a , b } e. ( Edg ` g ) <-> { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) ) ) |
| 5 |
4
|
anbi1d |
|- ( g = ( 5 gPetersenGr 1 ) -> ( ( { a , b } e. ( Edg ` g ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) <-> ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) ) ) |
| 6 |
2 5
|
rexeqbidv |
|- ( g = ( 5 gPetersenGr 1 ) -> ( E. b e. ( Vtx ` g ) ( { a , b } e. ( Edg ` g ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) <-> E. b e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) ) ) |
| 7 |
2 6
|
rexeqbidv |
|- ( g = ( 5 gPetersenGr 1 ) -> ( E. a e. ( Vtx ` g ) E. b e. ( Vtx ` g ) ( { a , b } e. ( Edg ` g ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) <-> E. a e. ( Vtx ` ( 5 gPetersenGr 1 ) ) E. b e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) ) ) |
| 8 |
1 7
|
rexeqbidv |
|- ( g = ( 5 gPetersenGr 1 ) -> ( E. f e. ( g GraphLocIso h ) E. a e. ( Vtx ` g ) E. b e. ( Vtx ` g ) ( { a , b } e. ( Edg ` g ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) <-> E. f e. ( ( 5 gPetersenGr 1 ) GraphLocIso h ) E. a e. ( Vtx ` ( 5 gPetersenGr 1 ) ) E. b e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) ) ) |
| 9 |
|
oveq2 |
|- ( h = ( 5 gPetersenGr 2 ) -> ( ( 5 gPetersenGr 1 ) GraphLocIso h ) = ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) ) |
| 10 |
|
eqidd |
|- ( h = ( 5 gPetersenGr 2 ) -> { ( f ` a ) , ( f ` b ) } = { ( f ` a ) , ( f ` b ) } ) |
| 11 |
|
fveq2 |
|- ( h = ( 5 gPetersenGr 2 ) -> ( Edg ` h ) = ( Edg ` ( 5 gPetersenGr 2 ) ) ) |
| 12 |
10 11
|
neleq12d |
|- ( h = ( 5 gPetersenGr 2 ) -> ( { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) <-> { ( f ` a ) , ( f ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) |
| 13 |
12
|
anbi2d |
|- ( h = ( 5 gPetersenGr 2 ) -> ( ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) <-> ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) ) |
| 14 |
13
|
2rexbidv |
|- ( h = ( 5 gPetersenGr 2 ) -> ( E. a e. ( Vtx ` ( 5 gPetersenGr 1 ) ) E. b e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) <-> E. a e. ( Vtx ` ( 5 gPetersenGr 1 ) ) E. b e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) ) |
| 15 |
9 14
|
rexeqbidv |
|- ( h = ( 5 gPetersenGr 2 ) -> ( E. f e. ( ( 5 gPetersenGr 1 ) GraphLocIso h ) E. a e. ( Vtx ` ( 5 gPetersenGr 1 ) ) E. b e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) <-> E. f e. ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) E. a e. ( Vtx ` ( 5 gPetersenGr 1 ) ) E. b e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) ) |
| 16 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 17 |
|
gpgprismgrusgra |
|- ( 5 e. ( ZZ>= ` 3 ) -> ( 5 gPetersenGr 1 ) e. USGraph ) |
| 18 |
16 17
|
mp1i |
|- ( T. -> ( 5 gPetersenGr 1 ) e. USGraph ) |
| 19 |
|
pgjsgr |
|- ( 5 gPetersenGr 2 ) e. USGraph |
| 20 |
19
|
a1i |
|- ( T. -> ( 5 gPetersenGr 2 ) e. USGraph ) |
| 21 |
|
fveq1 |
|- ( f = ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) -> ( f ` a ) = ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` a ) ) |
| 22 |
|
fveq1 |
|- ( f = ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) -> ( f ` b ) = ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) ) |
| 23 |
21 22
|
preq12d |
|- ( f = ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) -> { ( f ` a ) , ( f ` b ) } = { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` a ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } ) |
| 24 |
|
eqidd |
|- ( f = ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) -> ( Edg ` ( 5 gPetersenGr 2 ) ) = ( Edg ` ( 5 gPetersenGr 2 ) ) ) |
| 25 |
23 24
|
neleq12d |
|- ( f = ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) -> ( { ( f ` a ) , ( f ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) <-> { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` a ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) |
| 26 |
25
|
anbi2d |
|- ( f = ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) -> ( ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) <-> ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` a ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) ) |
| 27 |
|
preq1 |
|- ( a = <. 1 , 0 >. -> { a , b } = { <. 1 , 0 >. , b } ) |
| 28 |
27
|
eleq1d |
|- ( a = <. 1 , 0 >. -> ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) <-> { <. 1 , 0 >. , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) ) ) |
| 29 |
|
fveq2 |
|- ( a = <. 1 , 0 >. -> ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` a ) = ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) ) |
| 30 |
29
|
preq1d |
|- ( a = <. 1 , 0 >. -> { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` a ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } = { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } ) |
| 31 |
|
eqidd |
|- ( a = <. 1 , 0 >. -> ( Edg ` ( 5 gPetersenGr 2 ) ) = ( Edg ` ( 5 gPetersenGr 2 ) ) ) |
| 32 |
30 31
|
neleq12d |
|- ( a = <. 1 , 0 >. -> ( { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` a ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) <-> { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) |
| 33 |
28 32
|
anbi12d |
|- ( a = <. 1 , 0 >. -> ( ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` a ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) <-> ( { <. 1 , 0 >. , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) ) |
| 34 |
|
preq2 |
|- ( b = <. 1 , 1 >. -> { <. 1 , 0 >. , b } = { <. 1 , 0 >. , <. 1 , 1 >. } ) |
| 35 |
34
|
eleq1d |
|- ( b = <. 1 , 1 >. -> ( { <. 1 , 0 >. , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) <-> { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) ) ) |
| 36 |
|
fveq2 |
|- ( b = <. 1 , 1 >. -> ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) = ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) ) |
| 37 |
36
|
preq2d |
|- ( b = <. 1 , 1 >. -> { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } = { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } ) |
| 38 |
|
eqidd |
|- ( b = <. 1 , 1 >. -> ( Edg ` ( 5 gPetersenGr 2 ) ) = ( Edg ` ( 5 gPetersenGr 2 ) ) ) |
| 39 |
37 38
|
neleq12d |
|- ( b = <. 1 , 1 >. -> ( { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) <-> { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) |
| 40 |
35 39
|
anbi12d |
|- ( b = <. 1 , 1 >. -> ( ( { <. 1 , 0 >. , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) <-> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) ) |
| 41 |
|
gpg5grlim |
|- ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) e. ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) |
| 42 |
41
|
a1i |
|- ( T. -> ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) e. ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) ) |
| 43 |
|
1ex |
|- 1 e. _V |
| 44 |
43
|
prid2 |
|- 1 e. { 0 , 1 } |
| 45 |
|
5nn |
|- 5 e. NN |
| 46 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 5 ) <-> 5 e. NN ) |
| 47 |
45 46
|
mpbir |
|- 0 e. ( 0 ..^ 5 ) |
| 48 |
44 47
|
opelxpii |
|- <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ 5 ) ) |
| 49 |
|
1elfzo1ceilhalf1 |
|- ( 5 e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 50 |
16 49
|
ax-mp |
|- 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 51 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 52 |
|
eqid |
|- ( 0 ..^ 5 ) = ( 0 ..^ 5 ) |
| 53 |
51 52
|
gpgvtx |
|- ( ( 5 e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( Vtx ` ( 5 gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) |
| 54 |
45 50 53
|
mp2an |
|- ( Vtx ` ( 5 gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ 5 ) ) |
| 55 |
48 54
|
eleqtrri |
|- <. 1 , 0 >. e. ( Vtx ` ( 5 gPetersenGr 1 ) ) |
| 56 |
55
|
a1i |
|- ( T. -> <. 1 , 0 >. e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ) |
| 57 |
|
1nn0 |
|- 1 e. NN0 |
| 58 |
45
|
nnzi |
|- 5 e. ZZ |
| 59 |
|
1lt5 |
|- 1 < 5 |
| 60 |
|
elfzo0z |
|- ( 1 e. ( 0 ..^ 5 ) <-> ( 1 e. NN0 /\ 5 e. ZZ /\ 1 < 5 ) ) |
| 61 |
57 58 59 60
|
mpbir3an |
|- 1 e. ( 0 ..^ 5 ) |
| 62 |
44 61
|
opelxpii |
|- <. 1 , 1 >. e. ( { 0 , 1 } X. ( 0 ..^ 5 ) ) |
| 63 |
62 54
|
eleqtrri |
|- <. 1 , 1 >. e. ( Vtx ` ( 5 gPetersenGr 1 ) ) |
| 64 |
63
|
a1i |
|- ( T. -> <. 1 , 1 >. e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ) |
| 65 |
|
gpg5edgnedg |
|- ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) |
| 66 |
|
fvresi |
|- ( <. 1 , 0 >. e. ( { 0 , 1 } X. ( 0 ..^ 5 ) ) -> ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) = <. 1 , 0 >. ) |
| 67 |
48 66
|
ax-mp |
|- ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) = <. 1 , 0 >. |
| 68 |
|
fvresi |
|- ( <. 1 , 1 >. e. ( { 0 , 1 } X. ( 0 ..^ 5 ) ) -> ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) = <. 1 , 1 >. ) |
| 69 |
62 68
|
ax-mp |
|- ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) = <. 1 , 1 >. |
| 70 |
67 69
|
preq12i |
|- { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } = { <. 1 , 0 >. , <. 1 , 1 >. } |
| 71 |
|
neleq1 |
|- ( { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } = { <. 1 , 0 >. , <. 1 , 1 >. } -> ( { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) <-> { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) |
| 72 |
70 71
|
ax-mp |
|- ( { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) <-> { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) |
| 73 |
72
|
anbi2i |
|- ( ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) <-> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { <. 1 , 0 >. , <. 1 , 1 >. } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) |
| 74 |
65 73
|
mpbir |
|- ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) |
| 75 |
74
|
a1i |
|- ( T. -> ( { <. 1 , 0 >. , <. 1 , 1 >. } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 0 >. ) , ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ` <. 1 , 1 >. ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) |
| 76 |
26 33 40 42 56 64 75
|
3rspcedvdw |
|- ( T. -> E. f e. ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) E. a e. ( Vtx ` ( 5 gPetersenGr 1 ) ) E. b e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( { a , b } e. ( Edg ` ( 5 gPetersenGr 1 ) ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` ( 5 gPetersenGr 2 ) ) ) ) |
| 77 |
8 15 18 20 76
|
2rspcedvdw |
|- ( T. -> E. g e. USGraph E. h e. USGraph E. f e. ( g GraphLocIso h ) E. a e. ( Vtx ` g ) E. b e. ( Vtx ` g ) ( { a , b } e. ( Edg ` g ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) ) |
| 78 |
77
|
mptru |
|- E. g e. USGraph E. h e. USGraph E. f e. ( g GraphLocIso h ) E. a e. ( Vtx ` g ) E. b e. ( Vtx ` g ) ( { a , b } e. ( Edg ` g ) /\ { ( f ` a ) , ( f ` b ) } e/ ( Edg ` h ) ) |