| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 2 |
|
3z |
|- 3 e. ZZ |
| 3 |
|
1lt3 |
|- 1 < 3 |
| 4 |
|
eluz2b1 |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 1 < 3 ) ) |
| 5 |
2 3 4
|
mpbir2an |
|- 3 e. ( ZZ>= ` 2 ) |
| 6 |
|
fzo1lb |
|- ( 1 e. ( 1 ..^ 3 ) <-> 3 e. ( ZZ>= ` 2 ) ) |
| 7 |
5 6
|
mpbir |
|- 1 e. ( 1 ..^ 3 ) |
| 8 |
|
ceil5half3 |
|- ( |^ ` ( 5 / 2 ) ) = 3 |
| 9 |
8
|
eqcomi |
|- 3 = ( |^ ` ( 5 / 2 ) ) |
| 10 |
9
|
oveq2i |
|- ( 1 ..^ 3 ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 11 |
7 10
|
eleqtri |
|- 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 12 |
|
gpgusgra |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr 1 ) e. USGraph ) |
| 13 |
1 11 12
|
mp2an |
|- ( 5 gPetersenGr 1 ) e. USGraph |
| 14 |
|
pgjsgr |
|- ( 5 gPetersenGr 2 ) e. USGraph |
| 15 |
|
f1oi |
|- ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) : ( { 0 , 1 } X. ( 0 ..^ 5 ) ) -1-1-onto-> ( { 0 , 1 } X. ( 0 ..^ 5 ) ) |
| 16 |
|
5nn |
|- 5 e. NN |
| 17 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 18 |
|
eqidd |
|- ( ( 5 e. NN /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) = ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ) |
| 19 |
11
|
a1i |
|- ( 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) -> 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 20 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 21 |
|
eqid |
|- ( 0 ..^ 5 ) = ( 0 ..^ 5 ) |
| 22 |
20 21
|
gpgvtx |
|- ( ( 5 e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( Vtx ` ( 5 gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) |
| 23 |
19 22
|
sylan2 |
|- ( ( 5 e. NN /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( Vtx ` ( 5 gPetersenGr 1 ) ) = ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) |
| 24 |
20 21
|
gpgvtx |
|- ( ( 5 e. NN /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( Vtx ` ( 5 gPetersenGr 2 ) ) = ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) |
| 25 |
18 23 24
|
f1oeq123d |
|- ( ( 5 e. NN /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) : ( Vtx ` ( 5 gPetersenGr 1 ) ) -1-1-onto-> ( Vtx ` ( 5 gPetersenGr 2 ) ) <-> ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) : ( { 0 , 1 } X. ( 0 ..^ 5 ) ) -1-1-onto-> ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) ) |
| 26 |
16 17 25
|
mp2an |
|- ( ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) : ( Vtx ` ( 5 gPetersenGr 1 ) ) -1-1-onto-> ( Vtx ` ( 5 gPetersenGr 2 ) ) <-> ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) : ( { 0 , 1 } X. ( 0 ..^ 5 ) ) -1-1-onto-> ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) |
| 27 |
15 26
|
mpbir |
|- ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) : ( Vtx ` ( 5 gPetersenGr 1 ) ) -1-1-onto-> ( Vtx ` ( 5 gPetersenGr 2 ) ) |
| 28 |
13 14 27
|
3pm3.2i |
|- ( ( 5 gPetersenGr 1 ) e. USGraph /\ ( 5 gPetersenGr 2 ) e. USGraph /\ ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) : ( Vtx ` ( 5 gPetersenGr 1 ) ) -1-1-onto-> ( Vtx ` ( 5 gPetersenGr 2 ) ) ) |
| 29 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 30 |
|
eluzfz1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... 2 ) ) |
| 31 |
29 30
|
ax-mp |
|- 1 e. ( 1 ... 2 ) |
| 32 |
|
eqid |
|- ( 5 gPetersenGr 1 ) = ( 5 gPetersenGr 1 ) |
| 33 |
32
|
gpg5gricstgr3 |
|- ( ( 1 e. ( 1 ... 2 ) /\ v e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ) -> ( ( 5 gPetersenGr 1 ) ISubGr ( ( 5 gPetersenGr 1 ) ClNeighbVtx v ) ) ~=gr ( StarGr ` 3 ) ) |
| 34 |
31 33
|
mpan |
|- ( v e. ( Vtx ` ( 5 gPetersenGr 1 ) ) -> ( ( 5 gPetersenGr 1 ) ISubGr ( ( 5 gPetersenGr 1 ) ClNeighbVtx v ) ) ~=gr ( StarGr ` 3 ) ) |
| 35 |
34
|
rgen |
|- A. v e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( ( 5 gPetersenGr 1 ) ISubGr ( ( 5 gPetersenGr 1 ) ClNeighbVtx v ) ) ~=gr ( StarGr ` 3 ) |
| 36 |
|
eluzfz2 |
|- ( 2 e. ( ZZ>= ` 1 ) -> 2 e. ( 1 ... 2 ) ) |
| 37 |
29 36
|
ax-mp |
|- 2 e. ( 1 ... 2 ) |
| 38 |
|
eqid |
|- ( 5 gPetersenGr 2 ) = ( 5 gPetersenGr 2 ) |
| 39 |
38
|
gpg5gricstgr3 |
|- ( ( 2 e. ( 1 ... 2 ) /\ w e. ( Vtx ` ( 5 gPetersenGr 2 ) ) ) -> ( ( 5 gPetersenGr 2 ) ISubGr ( ( 5 gPetersenGr 2 ) ClNeighbVtx w ) ) ~=gr ( StarGr ` 3 ) ) |
| 40 |
37 39
|
mpan |
|- ( w e. ( Vtx ` ( 5 gPetersenGr 2 ) ) -> ( ( 5 gPetersenGr 2 ) ISubGr ( ( 5 gPetersenGr 2 ) ClNeighbVtx w ) ) ~=gr ( StarGr ` 3 ) ) |
| 41 |
40
|
rgen |
|- A. w e. ( Vtx ` ( 5 gPetersenGr 2 ) ) ( ( 5 gPetersenGr 2 ) ISubGr ( ( 5 gPetersenGr 2 ) ClNeighbVtx w ) ) ~=gr ( StarGr ` 3 ) |
| 42 |
|
3nn0 |
|- 3 e. NN0 |
| 43 |
|
eqid |
|- ( Vtx ` ( 5 gPetersenGr 1 ) ) = ( Vtx ` ( 5 gPetersenGr 1 ) ) |
| 44 |
|
eqid |
|- ( Vtx ` ( 5 gPetersenGr 2 ) ) = ( Vtx ` ( 5 gPetersenGr 2 ) ) |
| 45 |
42 43 44
|
clnbgr3stgrgrlim |
|- ( ( ( ( 5 gPetersenGr 1 ) e. USGraph /\ ( 5 gPetersenGr 2 ) e. USGraph /\ ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) : ( Vtx ` ( 5 gPetersenGr 1 ) ) -1-1-onto-> ( Vtx ` ( 5 gPetersenGr 2 ) ) ) /\ A. v e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( ( 5 gPetersenGr 1 ) ISubGr ( ( 5 gPetersenGr 1 ) ClNeighbVtx v ) ) ~=gr ( StarGr ` 3 ) /\ A. w e. ( Vtx ` ( 5 gPetersenGr 2 ) ) ( ( 5 gPetersenGr 2 ) ISubGr ( ( 5 gPetersenGr 2 ) ClNeighbVtx w ) ) ~=gr ( StarGr ` 3 ) ) -> ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) e. ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) ) |
| 46 |
28 35 41 45
|
mp3an |
|- ( _I |` ( { 0 , 1 } X. ( 0 ..^ 5 ) ) ) e. ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) |