| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 2 |
|
3z |
|- 3 e. ZZ |
| 3 |
|
1lt3 |
|- 1 < 3 |
| 4 |
|
eluz2b1 |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 1 < 3 ) ) |
| 5 |
2 3 4
|
mpbir2an |
|- 3 e. ( ZZ>= ` 2 ) |
| 6 |
|
fzo1lb |
|- ( 1 e. ( 1 ..^ 3 ) <-> 3 e. ( ZZ>= ` 2 ) ) |
| 7 |
5 6
|
mpbir |
|- 1 e. ( 1 ..^ 3 ) |
| 8 |
|
ceil5half3 |
|- ( |^ ` ( 5 / 2 ) ) = 3 |
| 9 |
8
|
eqcomi |
|- 3 = ( |^ ` ( 5 / 2 ) ) |
| 10 |
9
|
oveq2i |
|- ( 1 ..^ 3 ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 11 |
7 10
|
eleqtri |
|- 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 12 |
|
gpgusgra |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr 1 ) e. USGraph ) |
| 13 |
1 11 12
|
mp2an |
|- ( 5 gPetersenGr 1 ) e. USGraph |
| 14 |
|
2nn |
|- 2 e. NN |
| 15 |
|
3nn |
|- 3 e. NN |
| 16 |
|
2lt3 |
|- 2 < 3 |
| 17 |
|
elfzo1 |
|- ( 2 e. ( 1 ..^ 3 ) <-> ( 2 e. NN /\ 3 e. NN /\ 2 < 3 ) ) |
| 18 |
14 15 16 17
|
mpbir3an |
|- 2 e. ( 1 ..^ 3 ) |
| 19 |
18 10
|
eleqtri |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 20 |
|
gpgusgra |
|- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr 2 ) e. USGraph ) |
| 21 |
1 19 20
|
mp2an |
|- ( 5 gPetersenGr 2 ) e. USGraph |
| 22 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 23 |
|
eluzfz1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... 2 ) ) |
| 24 |
22 23
|
ax-mp |
|- 1 e. ( 1 ... 2 ) |
| 25 |
|
gpg5order |
|- ( 1 e. ( 1 ... 2 ) -> ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ; 1 0 ) |
| 26 |
24 25
|
ax-mp |
|- ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ; 1 0 |
| 27 |
|
eluzfz2 |
|- ( 2 e. ( ZZ>= ` 1 ) -> 2 e. ( 1 ... 2 ) ) |
| 28 |
22 27
|
ax-mp |
|- 2 e. ( 1 ... 2 ) |
| 29 |
|
gpg5order |
|- ( 2 e. ( 1 ... 2 ) -> ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) = ; 1 0 ) |
| 30 |
28 29
|
ax-mp |
|- ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) = ; 1 0 |
| 31 |
|
eqtr3 |
|- ( ( ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ; 1 0 /\ ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) = ; 1 0 ) -> ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) ) |
| 32 |
|
fvex |
|- ( Vtx ` ( 5 gPetersenGr 1 ) ) e. _V |
| 33 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 34 |
|
hashvnfin |
|- ( ( ( Vtx ` ( 5 gPetersenGr 1 ) ) e. _V /\ ; 1 0 e. NN0 ) -> ( ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ; 1 0 -> ( Vtx ` ( 5 gPetersenGr 1 ) ) e. Fin ) ) |
| 35 |
32 33 34
|
mp2an |
|- ( ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ; 1 0 -> ( Vtx ` ( 5 gPetersenGr 1 ) ) e. Fin ) |
| 36 |
|
fvex |
|- ( Vtx ` ( 5 gPetersenGr 2 ) ) e. _V |
| 37 |
|
hashvnfin |
|- ( ( ( Vtx ` ( 5 gPetersenGr 2 ) ) e. _V /\ ; 1 0 e. NN0 ) -> ( ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) = ; 1 0 -> ( Vtx ` ( 5 gPetersenGr 2 ) ) e. Fin ) ) |
| 38 |
36 33 37
|
mp2an |
|- ( ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) = ; 1 0 -> ( Vtx ` ( 5 gPetersenGr 2 ) ) e. Fin ) |
| 39 |
|
hashen |
|- ( ( ( Vtx ` ( 5 gPetersenGr 1 ) ) e. Fin /\ ( Vtx ` ( 5 gPetersenGr 2 ) ) e. Fin ) -> ( ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) <-> ( Vtx ` ( 5 gPetersenGr 1 ) ) ~~ ( Vtx ` ( 5 gPetersenGr 2 ) ) ) ) |
| 40 |
35 38 39
|
syl2an |
|- ( ( ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ; 1 0 /\ ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) = ; 1 0 ) -> ( ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) <-> ( Vtx ` ( 5 gPetersenGr 1 ) ) ~~ ( Vtx ` ( 5 gPetersenGr 2 ) ) ) ) |
| 41 |
31 40
|
mpbid |
|- ( ( ( # ` ( Vtx ` ( 5 gPetersenGr 1 ) ) ) = ; 1 0 /\ ( # ` ( Vtx ` ( 5 gPetersenGr 2 ) ) ) = ; 1 0 ) -> ( Vtx ` ( 5 gPetersenGr 1 ) ) ~~ ( Vtx ` ( 5 gPetersenGr 2 ) ) ) |
| 42 |
26 30 41
|
mp2an |
|- ( Vtx ` ( 5 gPetersenGr 1 ) ) ~~ ( Vtx ` ( 5 gPetersenGr 2 ) ) |
| 43 |
13 21 42
|
3pm3.2i |
|- ( ( 5 gPetersenGr 1 ) e. USGraph /\ ( 5 gPetersenGr 2 ) e. USGraph /\ ( Vtx ` ( 5 gPetersenGr 1 ) ) ~~ ( Vtx ` ( 5 gPetersenGr 2 ) ) ) |
| 44 |
|
eqid |
|- ( 5 gPetersenGr 1 ) = ( 5 gPetersenGr 1 ) |
| 45 |
44
|
gpg5gricstgr3 |
|- ( ( 1 e. ( 1 ... 2 ) /\ v e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ) -> ( ( 5 gPetersenGr 1 ) ISubGr ( ( 5 gPetersenGr 1 ) ClNeighbVtx v ) ) ~=gr ( StarGr ` 3 ) ) |
| 46 |
24 45
|
mpan |
|- ( v e. ( Vtx ` ( 5 gPetersenGr 1 ) ) -> ( ( 5 gPetersenGr 1 ) ISubGr ( ( 5 gPetersenGr 1 ) ClNeighbVtx v ) ) ~=gr ( StarGr ` 3 ) ) |
| 47 |
46
|
rgen |
|- A. v e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( ( 5 gPetersenGr 1 ) ISubGr ( ( 5 gPetersenGr 1 ) ClNeighbVtx v ) ) ~=gr ( StarGr ` 3 ) |
| 48 |
|
eqid |
|- ( 5 gPetersenGr 2 ) = ( 5 gPetersenGr 2 ) |
| 49 |
48
|
gpg5gricstgr3 |
|- ( ( 2 e. ( 1 ... 2 ) /\ w e. ( Vtx ` ( 5 gPetersenGr 2 ) ) ) -> ( ( 5 gPetersenGr 2 ) ISubGr ( ( 5 gPetersenGr 2 ) ClNeighbVtx w ) ) ~=gr ( StarGr ` 3 ) ) |
| 50 |
28 49
|
mpan |
|- ( w e. ( Vtx ` ( 5 gPetersenGr 2 ) ) -> ( ( 5 gPetersenGr 2 ) ISubGr ( ( 5 gPetersenGr 2 ) ClNeighbVtx w ) ) ~=gr ( StarGr ` 3 ) ) |
| 51 |
50
|
rgen |
|- A. w e. ( Vtx ` ( 5 gPetersenGr 2 ) ) ( ( 5 gPetersenGr 2 ) ISubGr ( ( 5 gPetersenGr 2 ) ClNeighbVtx w ) ) ~=gr ( StarGr ` 3 ) |
| 52 |
|
3nn0 |
|- 3 e. NN0 |
| 53 |
|
eqid |
|- ( Vtx ` ( 5 gPetersenGr 1 ) ) = ( Vtx ` ( 5 gPetersenGr 1 ) ) |
| 54 |
|
eqid |
|- ( Vtx ` ( 5 gPetersenGr 2 ) ) = ( Vtx ` ( 5 gPetersenGr 2 ) ) |
| 55 |
52 53 54
|
clnbgr3stgrgrlic |
|- ( ( ( ( 5 gPetersenGr 1 ) e. USGraph /\ ( 5 gPetersenGr 2 ) e. USGraph /\ ( Vtx ` ( 5 gPetersenGr 1 ) ) ~~ ( Vtx ` ( 5 gPetersenGr 2 ) ) ) /\ A. v e. ( Vtx ` ( 5 gPetersenGr 1 ) ) ( ( 5 gPetersenGr 1 ) ISubGr ( ( 5 gPetersenGr 1 ) ClNeighbVtx v ) ) ~=gr ( StarGr ` 3 ) /\ A. w e. ( Vtx ` ( 5 gPetersenGr 2 ) ) ( ( 5 gPetersenGr 2 ) ISubGr ( ( 5 gPetersenGr 2 ) ClNeighbVtx w ) ) ~=gr ( StarGr ` 3 ) ) -> ( 5 gPetersenGr 1 ) ~=lgr ( 5 gPetersenGr 2 ) ) |
| 56 |
43 47 51 55
|
mp3an |
|- ( 5 gPetersenGr 1 ) ~=lgr ( 5 gPetersenGr 2 ) |