| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑔 = ( 5 gPetersenGr 1 ) → ( 𝑔 GraphLocIso ℎ ) = ( ( 5 gPetersenGr 1 ) GraphLocIso ℎ ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑔 = ( 5 gPetersenGr 1 ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑔 = ( 5 gPetersenGr 1 ) → ( Edg ‘ 𝑔 ) = ( Edg ‘ ( 5 gPetersenGr 1 ) ) ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝑔 = ( 5 gPetersenGr 1 ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝑔 ) ↔ { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ) ) |
| 5 |
4
|
anbi1d |
⊢ ( 𝑔 = ( 5 gPetersenGr 1 ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝑔 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ↔ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ) ) |
| 6 |
2 5
|
rexeqbidv |
⊢ ( 𝑔 = ( 5 gPetersenGr 1 ) → ( ∃ 𝑏 ∈ ( Vtx ‘ 𝑔 ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝑔 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ↔ ∃ 𝑏 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ) ) |
| 7 |
2 6
|
rexeqbidv |
⊢ ( 𝑔 = ( 5 gPetersenGr 1 ) → ( ∃ 𝑎 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝑔 ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝑔 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ↔ ∃ 𝑎 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ∃ 𝑏 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ) ) |
| 8 |
1 7
|
rexeqbidv |
⊢ ( 𝑔 = ( 5 gPetersenGr 1 ) → ( ∃ 𝑓 ∈ ( 𝑔 GraphLocIso ℎ ) ∃ 𝑎 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝑔 ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝑔 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ↔ ∃ 𝑓 ∈ ( ( 5 gPetersenGr 1 ) GraphLocIso ℎ ) ∃ 𝑎 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ∃ 𝑏 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ) ) |
| 9 |
|
oveq2 |
⊢ ( ℎ = ( 5 gPetersenGr 2 ) → ( ( 5 gPetersenGr 1 ) GraphLocIso ℎ ) = ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) ) |
| 10 |
|
eqidd |
⊢ ( ℎ = ( 5 gPetersenGr 2 ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } = { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ) |
| 11 |
|
fveq2 |
⊢ ( ℎ = ( 5 gPetersenGr 2 ) → ( Edg ‘ ℎ ) = ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) |
| 12 |
10 11
|
neleq12d |
⊢ ( ℎ = ( 5 gPetersenGr 2 ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) |
| 13 |
12
|
anbi2d |
⊢ ( ℎ = ( 5 gPetersenGr 2 ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ↔ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) ) |
| 14 |
13
|
2rexbidv |
⊢ ( ℎ = ( 5 gPetersenGr 2 ) → ( ∃ 𝑎 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ∃ 𝑏 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ↔ ∃ 𝑎 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ∃ 𝑏 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) ) |
| 15 |
9 14
|
rexeqbidv |
⊢ ( ℎ = ( 5 gPetersenGr 2 ) → ( ∃ 𝑓 ∈ ( ( 5 gPetersenGr 1 ) GraphLocIso ℎ ) ∃ 𝑎 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ∃ 𝑏 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ↔ ∃ 𝑓 ∈ ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) ∃ 𝑎 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ∃ 𝑏 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) ) |
| 16 |
|
5eluz3 |
⊢ 5 ∈ ( ℤ≥ ‘ 3 ) |
| 17 |
|
gpgprismgrusgra |
⊢ ( 5 ∈ ( ℤ≥ ‘ 3 ) → ( 5 gPetersenGr 1 ) ∈ USGraph ) |
| 18 |
16 17
|
mp1i |
⊢ ( ⊤ → ( 5 gPetersenGr 1 ) ∈ USGraph ) |
| 19 |
|
pgjsgr |
⊢ ( 5 gPetersenGr 2 ) ∈ USGraph |
| 20 |
19
|
a1i |
⊢ ( ⊤ → ( 5 gPetersenGr 2 ) ∈ USGraph ) |
| 21 |
|
fveq1 |
⊢ ( 𝑓 = ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) → ( 𝑓 ‘ 𝑎 ) = ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑎 ) ) |
| 22 |
|
fveq1 |
⊢ ( 𝑓 = ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) → ( 𝑓 ‘ 𝑏 ) = ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) ) |
| 23 |
21 22
|
preq12d |
⊢ ( 𝑓 = ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) → { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } = { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑎 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ) |
| 24 |
|
eqidd |
⊢ ( 𝑓 = ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) → ( Edg ‘ ( 5 gPetersenGr 2 ) ) = ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) |
| 25 |
23 24
|
neleq12d |
⊢ ( 𝑓 = ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) → ( { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ↔ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑎 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) |
| 26 |
25
|
anbi2d |
⊢ ( 𝑓 = ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ↔ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑎 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) ) |
| 27 |
|
preq1 |
⊢ ( 𝑎 = 〈 1 , 0 〉 → { 𝑎 , 𝑏 } = { 〈 1 , 0 〉 , 𝑏 } ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑎 = 〈 1 , 0 〉 → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ↔ { 〈 1 , 0 〉 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑎 = 〈 1 , 0 〉 → ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑎 ) = ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) ) |
| 30 |
29
|
preq1d |
⊢ ( 𝑎 = 〈 1 , 0 〉 → { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑎 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } = { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ) |
| 31 |
|
eqidd |
⊢ ( 𝑎 = 〈 1 , 0 〉 → ( Edg ‘ ( 5 gPetersenGr 2 ) ) = ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) |
| 32 |
30 31
|
neleq12d |
⊢ ( 𝑎 = 〈 1 , 0 〉 → ( { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑎 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ↔ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) |
| 33 |
28 32
|
anbi12d |
⊢ ( 𝑎 = 〈 1 , 0 〉 → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑎 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ↔ ( { 〈 1 , 0 〉 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) ) |
| 34 |
|
preq2 |
⊢ ( 𝑏 = 〈 1 , 1 〉 → { 〈 1 , 0 〉 , 𝑏 } = { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ) |
| 35 |
34
|
eleq1d |
⊢ ( 𝑏 = 〈 1 , 1 〉 → ( { 〈 1 , 0 〉 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ↔ { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑏 = 〈 1 , 1 〉 → ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) = ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) ) |
| 37 |
36
|
preq2d |
⊢ ( 𝑏 = 〈 1 , 1 〉 → { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } = { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } ) |
| 38 |
|
eqidd |
⊢ ( 𝑏 = 〈 1 , 1 〉 → ( Edg ‘ ( 5 gPetersenGr 2 ) ) = ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) |
| 39 |
37 38
|
neleq12d |
⊢ ( 𝑏 = 〈 1 , 1 〉 → ( { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ↔ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) |
| 40 |
35 39
|
anbi12d |
⊢ ( 𝑏 = 〈 1 , 1 〉 → ( ( { 〈 1 , 0 〉 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ↔ ( { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) ) |
| 41 |
|
gpg5grlim |
⊢ ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ∈ ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) |
| 42 |
41
|
a1i |
⊢ ( ⊤ → ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ∈ ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) ) |
| 43 |
|
1ex |
⊢ 1 ∈ V |
| 44 |
43
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
| 45 |
|
5nn |
⊢ 5 ∈ ℕ |
| 46 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 5 ) ↔ 5 ∈ ℕ ) |
| 47 |
45 46
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 5 ) |
| 48 |
44 47
|
opelxpii |
⊢ 〈 1 , 0 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 5 ) ) |
| 49 |
|
1elfzo1ceilhalf1 |
⊢ ( 5 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) |
| 50 |
16 49
|
ax-mp |
⊢ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 51 |
|
eqid |
⊢ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 52 |
|
eqid |
⊢ ( 0 ..^ 5 ) = ( 0 ..^ 5 ) |
| 53 |
51 52
|
gpgvtx |
⊢ ( ( 5 ∈ ℕ ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( Vtx ‘ ( 5 gPetersenGr 1 ) ) = ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) |
| 54 |
45 50 53
|
mp2an |
⊢ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) = ( { 0 , 1 } × ( 0 ..^ 5 ) ) |
| 55 |
48 54
|
eleqtrri |
⊢ 〈 1 , 0 〉 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) |
| 56 |
55
|
a1i |
⊢ ( ⊤ → 〈 1 , 0 〉 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ) |
| 57 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 58 |
45
|
nnzi |
⊢ 5 ∈ ℤ |
| 59 |
|
1lt5 |
⊢ 1 < 5 |
| 60 |
|
elfzo0z |
⊢ ( 1 ∈ ( 0 ..^ 5 ) ↔ ( 1 ∈ ℕ0 ∧ 5 ∈ ℤ ∧ 1 < 5 ) ) |
| 61 |
57 58 59 60
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 5 ) |
| 62 |
44 61
|
opelxpii |
⊢ 〈 1 , 1 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 5 ) ) |
| 63 |
62 54
|
eleqtrri |
⊢ 〈 1 , 1 〉 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) |
| 64 |
63
|
a1i |
⊢ ( ⊤ → 〈 1 , 1 〉 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ) |
| 65 |
|
gpg5edgnedg |
⊢ ( { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) |
| 66 |
|
fvresi |
⊢ ( 〈 1 , 0 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 5 ) ) → ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) = 〈 1 , 0 〉 ) |
| 67 |
48 66
|
ax-mp |
⊢ ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) = 〈 1 , 0 〉 |
| 68 |
|
fvresi |
⊢ ( 〈 1 , 1 〉 ∈ ( { 0 , 1 } × ( 0 ..^ 5 ) ) → ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) = 〈 1 , 1 〉 ) |
| 69 |
62 68
|
ax-mp |
⊢ ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) = 〈 1 , 1 〉 |
| 70 |
67 69
|
preq12i |
⊢ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } = { 〈 1 , 0 〉 , 〈 1 , 1 〉 } |
| 71 |
|
neleq1 |
⊢ ( { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } = { 〈 1 , 0 〉 , 〈 1 , 1 〉 } → ( { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ↔ { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) |
| 72 |
70 71
|
ax-mp |
⊢ ( { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ↔ { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) |
| 73 |
72
|
anbi2i |
⊢ ( ( { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ↔ ( { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) |
| 74 |
65 73
|
mpbir |
⊢ ( { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) |
| 75 |
74
|
a1i |
⊢ ( ⊤ → ( { 〈 1 , 0 〉 , 〈 1 , 1 〉 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 0 〉 ) , ( ( I ↾ ( { 0 , 1 } × ( 0 ..^ 5 ) ) ) ‘ 〈 1 , 1 〉 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) |
| 76 |
26 33 40 42 56 64 75
|
3rspcedvdw |
⊢ ( ⊤ → ∃ 𝑓 ∈ ( ( 5 gPetersenGr 1 ) GraphLocIso ( 5 gPetersenGr 2 ) ) ∃ 𝑎 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ∃ 𝑏 ∈ ( Vtx ‘ ( 5 gPetersenGr 1 ) ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ ( 5 gPetersenGr 1 ) ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ( 5 gPetersenGr 2 ) ) ) ) |
| 77 |
8 15 18 20 76
|
2rspcedvdw |
⊢ ( ⊤ → ∃ 𝑔 ∈ USGraph ∃ ℎ ∈ USGraph ∃ 𝑓 ∈ ( 𝑔 GraphLocIso ℎ ) ∃ 𝑎 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝑔 ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝑔 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) ) |
| 78 |
77
|
mptru |
⊢ ∃ 𝑔 ∈ USGraph ∃ ℎ ∈ USGraph ∃ 𝑓 ∈ ( 𝑔 GraphLocIso ℎ ) ∃ 𝑎 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝑔 ) ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝑔 ) ∧ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∉ ( Edg ‘ ℎ ) ) |