| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgn4cyclex.g |
⊢ 𝐺 = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgjsgr |
⊢ ( 5 gPetersenGr 2 ) ∈ USGraph |
| 3 |
1 2
|
eqeltri |
⊢ 𝐺 ∈ USGraph |
| 4 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
| 5 |
3 4
|
ax-mp |
⊢ 𝐺 ∈ UPGraph |
| 6 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 8 |
6 7
|
upgr4cycl4dv4e |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 4 ) → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) ) |
| 9 |
5 8
|
mp3an1 |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 4 ) → ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) ) |
| 10 |
7
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 11 |
10
|
bicomd |
⊢ ( 𝐺 ∈ USGraph → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 12 |
3 11
|
ax-mp |
⊢ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 13 |
12
|
biimpi |
⊢ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) → 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 14 |
13
|
ad3antrrr |
⊢ ( ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 15 |
|
prcom |
⊢ { 𝑏 , 𝑐 } = { 𝑐 , 𝑏 } |
| 16 |
15
|
eleq1i |
⊢ ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑐 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) |
| 17 |
16
|
biimpi |
⊢ ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → { 𝑐 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) |
| 18 |
7
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑐 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ { 𝑐 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 19 |
3 18
|
ax-mp |
⊢ ( 𝑐 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ { 𝑐 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) |
| 20 |
17 19
|
sylibr |
⊢ ( { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) → 𝑐 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 21 |
20
|
ad3antlr |
⊢ ( ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑐 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 22 |
|
simprl2 |
⊢ ( ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑎 ≠ 𝑐 ) |
| 23 |
22
|
adantl |
⊢ ( ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) ) → 𝑎 ≠ 𝑐 ) |
| 24 |
|
eqid |
⊢ ( 𝐺 NeighbVtx 𝑏 ) = ( 𝐺 NeighbVtx 𝑏 ) |
| 25 |
1 6 7 24
|
pgnbgreunbgr |
⊢ ( ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ∧ 𝑐 ∈ ( 𝐺 NeighbVtx 𝑏 ) ∧ 𝑎 ≠ 𝑐 ) → ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑎 , 𝑥 } , { 𝑥 , 𝑐 } } ⊆ ( Edg ‘ 𝐺 ) ) |
| 26 |
14 21 23 25
|
syl2an23an |
⊢ ( ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) ) → ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑎 , 𝑥 } , { 𝑥 , 𝑐 } } ⊆ ( Edg ‘ 𝐺 ) ) |
| 27 |
|
simpll |
⊢ ( ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 28 |
|
simplr |
⊢ ( ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) |
| 31 |
29 30
|
anim12i |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 32 |
|
simprr2 |
⊢ ( ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑏 ≠ 𝑑 ) |
| 33 |
31 32
|
anim12i |
⊢ ( ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) ) → ( ( 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑏 ≠ 𝑑 ) ) |
| 34 |
|
df-3an |
⊢ ( ( 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ≠ 𝑑 ) ↔ ( ( 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑏 ≠ 𝑑 ) ) |
| 35 |
33 34
|
sylibr |
⊢ ( ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) ) → ( 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ≠ 𝑑 ) ) |
| 36 |
|
4cycl2vnunb |
⊢ ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ≠ 𝑑 ) ) → ¬ ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑎 , 𝑥 } , { 𝑥 , 𝑐 } } ⊆ ( Edg ‘ 𝐺 ) ) |
| 37 |
27 28 35 36
|
syl2an23an |
⊢ ( ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) ) → ¬ ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑎 , 𝑥 } , { 𝑥 , 𝑐 } } ⊆ ( Edg ‘ 𝐺 ) ) |
| 38 |
26 37
|
pm2.21dd |
⊢ ( ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) ∧ ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) ) → ( ♯ ‘ 𝐹 ) ≠ 4 ) |
| 39 |
38
|
ex |
⊢ ( ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → ( ♯ ‘ 𝐹 ) ≠ 4 ) ) |
| 40 |
39
|
rexlimdvva |
⊢ ( ( 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) → ( ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → ( ♯ ‘ 𝐹 ) ≠ 4 ) ) |
| 41 |
40
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑏 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑐 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑑 ∈ ( Vtx ‘ 𝐺 ) ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑐 , 𝑑 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑑 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ( 𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑 ) ∧ ( 𝑏 ≠ 𝑐 ∧ 𝑏 ≠ 𝑑 ∧ 𝑐 ≠ 𝑑 ) ) ) → ( ♯ ‘ 𝐹 ) ≠ 4 ) |
| 42 |
9 41
|
syl |
⊢ ( ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 4 ) → ( ♯ ‘ 𝐹 ) ≠ 4 ) |
| 43 |
42
|
ex |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) = 4 → ( ♯ ‘ 𝐹 ) ≠ 4 ) ) |
| 44 |
|
neqne |
⊢ ( ¬ ( ♯ ‘ 𝐹 ) = 4 → ( ♯ ‘ 𝐹 ) ≠ 4 ) |
| 45 |
43 44
|
pm2.61d1 |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≠ 4 ) |