| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgnbgreunbgr.g |
⊢ 𝐺 = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgnbgreunbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 3 |
|
pgnbgreunbgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
|
pgnbgreunbgr.n |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑋 ) |
| 5 |
|
preq2 |
⊢ ( 𝑥 = 𝑋 → { 𝐾 , 𝑥 } = { 𝐾 , 𝑋 } ) |
| 6 |
|
preq1 |
⊢ ( 𝑥 = 𝑋 → { 𝑥 , 𝐿 } = { 𝑋 , 𝐿 } ) |
| 7 |
5 6
|
preq12d |
⊢ ( 𝑥 = 𝑋 → { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } = { { 𝐾 , 𝑋 } , { 𝑋 , 𝐿 } } ) |
| 8 |
7
|
sseq1d |
⊢ ( 𝑥 = 𝑋 → ( { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } ⊆ 𝐸 ↔ { { 𝐾 , 𝑋 } , { 𝑋 , 𝐿 } } ⊆ 𝐸 ) ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑥 = 𝑦 ) ↔ ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑋 = 𝑦 ) ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝑉 ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑉 ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑋 = 𝑦 ) ) ) |
| 12 |
8 11
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } ⊆ 𝐸 ∧ ∀ 𝑦 ∈ 𝑉 ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑥 = 𝑦 ) ) ↔ ( { { 𝐾 , 𝑋 } , { 𝑋 , 𝐿 } } ⊆ 𝐸 ∧ ∀ 𝑦 ∈ 𝑉 ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑋 = 𝑦 ) ) ) ) |
| 13 |
4
|
eleq2i |
⊢ ( 𝐾 ∈ 𝑁 ↔ 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
| 14 |
13
|
biimpi |
⊢ ( 𝐾 ∈ 𝑁 → 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
| 16 |
|
pgjsgr |
⊢ ( 5 gPetersenGr 2 ) ∈ USGraph |
| 17 |
1 16
|
eqeltri |
⊢ 𝐺 ∈ USGraph |
| 18 |
3
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ { 𝐾 , 𝑋 } ∈ 𝐸 ) ) |
| 19 |
17 18
|
ax-mp |
⊢ ( 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ { 𝐾 , 𝑋 } ∈ 𝐸 ) |
| 20 |
15 19
|
sylib |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → { 𝐾 , 𝑋 } ∈ 𝐸 ) |
| 21 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
| 22 |
17 21
|
ax-mp |
⊢ 𝐺 ∈ UMGraph |
| 23 |
20 22
|
jctil |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → ( 𝐺 ∈ UMGraph ∧ { 𝐾 , 𝑋 } ∈ 𝐸 ) ) |
| 24 |
2 3
|
umgrpredgv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐾 , 𝑋 } ∈ 𝐸 ) → ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
| 25 |
|
simpr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 26 |
23 24 25
|
3syl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → 𝑋 ∈ 𝑉 ) |
| 27 |
4
|
eleq2i |
⊢ ( 𝐿 ∈ 𝑁 ↔ 𝐿 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
| 28 |
13 27
|
anbi12i |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) ↔ ( 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) ∧ 𝐿 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
| 29 |
3
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝐿 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ { 𝐿 , 𝑋 } ∈ 𝐸 ) ) |
| 30 |
|
prcom |
⊢ { 𝐿 , 𝑋 } = { 𝑋 , 𝐿 } |
| 31 |
30
|
eleq1i |
⊢ ( { 𝐿 , 𝑋 } ∈ 𝐸 ↔ { 𝑋 , 𝐿 } ∈ 𝐸 ) |
| 32 |
29 31
|
bitrdi |
⊢ ( 𝐺 ∈ USGraph → ( 𝐿 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ { 𝑋 , 𝐿 } ∈ 𝐸 ) ) |
| 33 |
18 32
|
anbi12d |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) ∧ 𝐿 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) ↔ ( { 𝐾 , 𝑋 } ∈ 𝐸 ∧ { 𝑋 , 𝐿 } ∈ 𝐸 ) ) ) |
| 34 |
17 33
|
ax-mp |
⊢ ( ( 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) ∧ 𝐿 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) ↔ ( { 𝐾 , 𝑋 } ∈ 𝐸 ∧ { 𝑋 , 𝐿 } ∈ 𝐸 ) ) |
| 35 |
28 34
|
sylbb |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ) → ( { 𝐾 , 𝑋 } ∈ 𝐸 ∧ { 𝑋 , 𝐿 } ∈ 𝐸 ) ) |
| 36 |
35
|
3adant3 |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → ( { 𝐾 , 𝑋 } ∈ 𝐸 ∧ { 𝑋 , 𝐿 } ∈ 𝐸 ) ) |
| 37 |
|
prssi |
⊢ ( ( { 𝐾 , 𝑋 } ∈ 𝐸 ∧ { 𝑋 , 𝐿 } ∈ 𝐸 ) → { { 𝐾 , 𝑋 } , { 𝑋 , 𝐿 } } ⊆ 𝐸 ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → { { 𝐾 , 𝑋 } , { 𝑋 , 𝐿 } } ⊆ 𝐸 ) |
| 39 |
|
prex |
⊢ { 𝐾 , 𝑦 } ∈ V |
| 40 |
|
prex |
⊢ { 𝑦 , 𝐿 } ∈ V |
| 41 |
39 40
|
prss |
⊢ ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) ↔ { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 ) |
| 42 |
|
5eluz3 |
⊢ 5 ∈ ( ℤ≥ ‘ 3 ) |
| 43 |
|
pglem |
⊢ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 44 |
|
eqid |
⊢ ( 0 ..^ 5 ) = ( 0 ..^ 5 ) |
| 45 |
|
eqid |
⊢ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| 46 |
44 45 1 2
|
gpgvtxel |
⊢ ( ( 5 ∈ ( ℤ≥ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( 𝑦 ∈ 𝑉 ↔ ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 5 ) 𝑦 = 〈 𝑎 , 𝑏 〉 ) ) |
| 47 |
42 43 46
|
mp2an |
⊢ ( 𝑦 ∈ 𝑉 ↔ ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 5 ) 𝑦 = 〈 𝑎 , 𝑏 〉 ) |
| 48 |
47
|
biimpi |
⊢ ( 𝑦 ∈ 𝑉 → ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 5 ) 𝑦 = 〈 𝑎 , 𝑏 〉 ) |
| 49 |
48
|
adantl |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) → ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 5 ) 𝑦 = 〈 𝑎 , 𝑏 〉 ) |
| 50 |
|
opeq1 |
⊢ ( 𝑎 = 0 → 〈 𝑎 , 𝑏 〉 = 〈 0 , 𝑏 〉 ) |
| 51 |
50
|
eqeq2d |
⊢ ( 𝑎 = 0 → ( 𝑦 = 〈 𝑎 , 𝑏 〉 ↔ 𝑦 = 〈 0 , 𝑏 〉 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑎 = 0 ∧ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑦 = 〈 𝑎 , 𝑏 〉 ↔ 𝑦 = 〈 0 , 𝑏 〉 ) ) |
| 53 |
1 2 3 4
|
pgnbgreunbgrlem3 |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 54 |
53
|
adantlr |
⊢ ( ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 55 |
|
preq2 |
⊢ ( 𝑦 = 〈 0 , 𝑏 〉 → { 𝐾 , 𝑦 } = { 𝐾 , 〈 0 , 𝑏 〉 } ) |
| 56 |
55
|
eleq1d |
⊢ ( 𝑦 = 〈 0 , 𝑏 〉 → ( { 𝐾 , 𝑦 } ∈ 𝐸 ↔ { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) ) |
| 57 |
|
preq1 |
⊢ ( 𝑦 = 〈 0 , 𝑏 〉 → { 𝑦 , 𝐿 } = { 〈 0 , 𝑏 〉 , 𝐿 } ) |
| 58 |
57
|
eleq1d |
⊢ ( 𝑦 = 〈 0 , 𝑏 〉 → ( { 𝑦 , 𝐿 } ∈ 𝐸 ↔ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) ) |
| 59 |
56 58
|
anbi12d |
⊢ ( 𝑦 = 〈 0 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) ↔ ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) ) ) |
| 60 |
|
eqeq2 |
⊢ ( 𝑦 = 〈 0 , 𝑏 〉 → ( 𝑋 = 𝑦 ↔ 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 61 |
59 60
|
imbi12d |
⊢ ( 𝑦 = 〈 0 , 𝑏 〉 → ( ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ↔ ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 62 |
54 61
|
syl5ibrcom |
⊢ ( ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑦 = 〈 0 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑎 = 0 ∧ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑦 = 〈 0 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) |
| 64 |
52 63
|
sylbid |
⊢ ( ( 𝑎 = 0 ∧ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) |
| 65 |
64
|
ex |
⊢ ( 𝑎 = 0 → ( ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) ) |
| 66 |
1 2 3 4
|
pgnbgreunbgrlem6 |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 1 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 1 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 1 , 𝑏 〉 ) ) |
| 67 |
66
|
adantlr |
⊢ ( ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 1 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 1 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 1 , 𝑏 〉 ) ) |
| 68 |
|
preq2 |
⊢ ( 𝑦 = 〈 1 , 𝑏 〉 → { 𝐾 , 𝑦 } = { 𝐾 , 〈 1 , 𝑏 〉 } ) |
| 69 |
68
|
eleq1d |
⊢ ( 𝑦 = 〈 1 , 𝑏 〉 → ( { 𝐾 , 𝑦 } ∈ 𝐸 ↔ { 𝐾 , 〈 1 , 𝑏 〉 } ∈ 𝐸 ) ) |
| 70 |
|
preq1 |
⊢ ( 𝑦 = 〈 1 , 𝑏 〉 → { 𝑦 , 𝐿 } = { 〈 1 , 𝑏 〉 , 𝐿 } ) |
| 71 |
70
|
eleq1d |
⊢ ( 𝑦 = 〈 1 , 𝑏 〉 → ( { 𝑦 , 𝐿 } ∈ 𝐸 ↔ { 〈 1 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) ) |
| 72 |
69 71
|
anbi12d |
⊢ ( 𝑦 = 〈 1 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) ↔ ( { 𝐾 , 〈 1 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 1 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) ) ) |
| 73 |
|
eqeq2 |
⊢ ( 𝑦 = 〈 1 , 𝑏 〉 → ( 𝑋 = 𝑦 ↔ 𝑋 = 〈 1 , 𝑏 〉 ) ) |
| 74 |
72 73
|
imbi12d |
⊢ ( 𝑦 = 〈 1 , 𝑏 〉 → ( ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ↔ ( ( { 𝐾 , 〈 1 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 1 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 1 , 𝑏 〉 ) ) ) |
| 75 |
67 74
|
syl5ibrcom |
⊢ ( ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑦 = 〈 1 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) |
| 76 |
|
opeq1 |
⊢ ( 𝑎 = 1 → 〈 𝑎 , 𝑏 〉 = 〈 1 , 𝑏 〉 ) |
| 77 |
76
|
eqeq2d |
⊢ ( 𝑎 = 1 → ( 𝑦 = 〈 𝑎 , 𝑏 〉 ↔ 𝑦 = 〈 1 , 𝑏 〉 ) ) |
| 78 |
77
|
imbi1d |
⊢ ( 𝑎 = 1 → ( ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ↔ ( 𝑦 = 〈 1 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) ) |
| 79 |
75 78
|
imbitrrid |
⊢ ( 𝑎 = 1 → ( ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) ) |
| 80 |
65 79
|
jaoi |
⊢ ( ( 𝑎 = 0 ∨ 𝑎 = 1 ) → ( ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) ) |
| 81 |
80
|
expd |
⊢ ( ( 𝑎 = 0 ∨ 𝑎 = 1 ) → ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑏 ∈ ( 0 ..^ 5 ) → ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) ) ) |
| 82 |
|
elpri |
⊢ ( 𝑎 ∈ { 0 , 1 } → ( 𝑎 = 0 ∨ 𝑎 = 1 ) ) |
| 83 |
81 82
|
syl11 |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑎 ∈ { 0 , 1 } → ( 𝑏 ∈ ( 0 ..^ 5 ) → ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) ) ) |
| 84 |
83
|
impd |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑎 ∈ { 0 , 1 } ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) ) |
| 85 |
84
|
rexlimdvv |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑎 ∈ { 0 , 1 } ∃ 𝑏 ∈ ( 0 ..^ 5 ) 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) ) |
| 86 |
49 85
|
mpd |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) → ( ( { 𝐾 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 𝑦 ) ) |
| 87 |
41 86
|
biimtrrid |
⊢ ( ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) ∧ 𝑦 ∈ 𝑉 ) → ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑋 = 𝑦 ) ) |
| 88 |
87
|
ralrimiva |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → ∀ 𝑦 ∈ 𝑉 ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑋 = 𝑦 ) ) |
| 89 |
38 88
|
jca |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → ( { { 𝐾 , 𝑋 } , { 𝑋 , 𝐿 } } ⊆ 𝐸 ∧ ∀ 𝑦 ∈ 𝑉 ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑋 = 𝑦 ) ) ) |
| 90 |
12 26 89
|
rspcedvdw |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → ∃ 𝑥 ∈ 𝑉 ( { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } ⊆ 𝐸 ∧ ∀ 𝑦 ∈ 𝑉 ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑥 = 𝑦 ) ) ) |
| 91 |
|
preq2 |
⊢ ( 𝑥 = 𝑦 → { 𝐾 , 𝑥 } = { 𝐾 , 𝑦 } ) |
| 92 |
|
preq1 |
⊢ ( 𝑥 = 𝑦 → { 𝑥 , 𝐿 } = { 𝑦 , 𝐿 } ) |
| 93 |
91 92
|
preq12d |
⊢ ( 𝑥 = 𝑦 → { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } = { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ) |
| 94 |
93
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } ⊆ 𝐸 ↔ { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 ) ) |
| 95 |
94
|
reu8 |
⊢ ( ∃! 𝑥 ∈ 𝑉 { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } ⊆ 𝐸 ↔ ∃ 𝑥 ∈ 𝑉 ( { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } ⊆ 𝐸 ∧ ∀ 𝑦 ∈ 𝑉 ( { { 𝐾 , 𝑦 } , { 𝑦 , 𝐿 } } ⊆ 𝐸 → 𝑥 = 𝑦 ) ) ) |
| 96 |
90 95
|
sylibr |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿 ) → ∃! 𝑥 ∈ 𝑉 { { 𝐾 , 𝑥 } , { 𝑥 , 𝐿 } } ⊆ 𝐸 ) |