Metamath Proof Explorer


Theorem pgnbgreunbgrlem6

Description: Lemma 6 for pgnbgreunbgr . (Contributed by AV, 20-Nov-2025)

Ref Expression
Hypotheses pgnbgreunbgr.g 𝐺 = ( 5 gPetersenGr 2 )
pgnbgreunbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
pgnbgreunbgr.e 𝐸 = ( Edg ‘ 𝐺 )
pgnbgreunbgr.n 𝑁 = ( 𝐺 NeighbVtx 𝑋 )
Assertion pgnbgreunbgrlem6 ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) )

Proof

Step Hyp Ref Expression
1 pgnbgreunbgr.g 𝐺 = ( 5 gPetersenGr 2 )
2 pgnbgreunbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
3 pgnbgreunbgr.e 𝐸 = ( Edg ‘ 𝐺 )
4 pgnbgreunbgr.n 𝑁 = ( 𝐺 NeighbVtx 𝑋 )
5 2 nbgrcl ( 𝐾 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑋𝑉 )
6 5 4 eleq2s ( 𝐾𝑁𝑋𝑉 )
7 6 3ad2ant1 ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) → 𝑋𝑉 )
8 5eluz3 5 ∈ ( ℤ ‘ 3 )
9 pglem 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
10 eqid ( 0 ..^ 5 ) = ( 0 ..^ 5 )
11 eqid ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
12 10 11 1 2 gpgvtxel ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) → ( 𝑋𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 5 ) 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) )
13 8 9 12 mp2an ( 𝑋𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 5 ) 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ )
14 13 biimpi ( 𝑋𝑉 → ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 5 ) 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ )
15 14 adantl ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) → ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 5 ) 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ )
16 vex 𝑥 ∈ V
17 16 elpr ( 𝑥 ∈ { 0 , 1 } ↔ ( 𝑥 = 0 ∨ 𝑥 = 1 ) )
18 8 9 pm3.2i ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
19 c0ex 0 ∈ V
20 vex 𝑦 ∈ V
21 19 20 op1std ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 1st𝑋 ) = 0 )
22 21 anim1ci ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) → ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) )
23 11 1 2 4 gpgnbgrvtx0 ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 𝑋𝑉 ∧ ( 1st𝑋 ) = 0 ) ) → 𝑁 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } )
24 18 22 23 sylancr ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) → 𝑁 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } )
25 eleq2 ( 𝑁 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } → ( 𝐾𝑁𝐾 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) )
26 eleq2 ( 𝑁 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } → ( 𝐿𝑁𝐿 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) )
27 25 26 anbi12d ( 𝑁 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } → ( ( 𝐾𝑁𝐿𝑁 ) ↔ ( 𝐾 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) ) )
28 27 adantl ( ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) ∧ 𝑁 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) → ( ( 𝐾𝑁𝐿𝑁 ) ↔ ( 𝐾 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) ) )
29 eltpi ( 𝐾 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } → ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) )
30 eltpi ( 𝐿 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } → ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) )
31 1 2 3 4 pgnbgreunbgrlem5 ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) → ( ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) → ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
32 30 31 syl ( 𝐿 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } → ( ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) → ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
33 29 32 mpan9 ( ( 𝐾 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) → ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
34 33 com12 ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) → ( ( 𝐾 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
35 34 adantr ( ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) ∧ 𝑁 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) → ( ( 𝐾 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
36 28 35 sylbid ( ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) ∧ 𝑁 = { ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ , ⟨ 1 , ( 2nd𝑋 ) ⟩ , ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ } ) → ( ( 𝐾𝑁𝐿𝑁 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
37 24 36 mpdan ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) → ( ( 𝐾𝑁𝐿𝑁 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
38 37 com12 ( ( 𝐾𝑁𝐿𝑁 ) → ( ( 𝑋 = ⟨ 0 , 𝑦 ⟩ ∧ 𝑋𝑉 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
39 38 expd ( ( 𝐾𝑁𝐿𝑁 ) → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 𝑋𝑉 → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
40 39 com24 ( ( 𝐾𝑁𝐿𝑁 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
41 40 expd ( ( 𝐾𝑁𝐿𝑁 ) → ( 𝐾𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) ) )
42 41 3impia ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
43 42 expdimp ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑦 ∈ ( 0 ..^ 5 ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
44 43 com23 ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑋𝑉 → ( 𝑦 ∈ ( 0 ..^ 5 ) → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
45 44 imp31 ( ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) )
46 opeq1 ( 𝑥 = 0 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 0 , 𝑦 ⟩ )
47 46 eqeq2d ( 𝑥 = 0 → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑋 = ⟨ 0 , 𝑦 ⟩ ) )
48 47 imbi1d ( 𝑥 = 0 → ( ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ↔ ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
49 45 48 imbitrrid ( 𝑥 = 0 → ( ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
50 opeq1 ( 𝑥 = 1 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 1 , 𝑦 ⟩ )
51 50 eqeq2d ( 𝑥 = 1 → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑋 = ⟨ 1 , 𝑦 ⟩ ) )
52 51 adantr ( ( 𝑥 = 1 ∧ ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑋 = ⟨ 1 , 𝑦 ⟩ ) )
53 2 eleq2i ( 𝑋𝑉𝑋 ∈ ( Vtx ‘ 𝐺 ) )
54 53 biimpi ( 𝑋𝑉𝑋 ∈ ( Vtx ‘ 𝐺 ) )
55 1ex 1 ∈ V
56 55 20 op1std ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( 1st𝑋 ) = 1 )
57 54 56 anim12i ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( 1st𝑋 ) = 1 ) )
58 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
59 11 1 58 4 gpgnbgrvtx1 ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( 1st𝑋 ) = 1 ) ) → 𝑁 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } )
60 18 57 59 sylancr ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → 𝑁 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } )
61 eleq2 ( 𝑁 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } → ( 𝐾𝑁𝐾 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) )
62 eleq2 ( 𝑁 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } → ( 𝐿𝑁𝐿 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) )
63 61 62 anbi12d ( 𝑁 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } → ( ( 𝐾𝑁𝐿𝑁 ) ↔ ( 𝐾 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) ) )
64 63 adantl ( ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) ∧ 𝑁 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) → ( ( 𝐾𝑁𝐿𝑁 ) ↔ ( 𝐾 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) ) )
65 eltpi ( 𝐾 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } → ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) )
66 eltpi ( 𝐿 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } → ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) )
67 1 2 3 4 pgnbgreunbgrlem4 ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) → ( ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) → ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
68 66 67 syl ( 𝐿 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } → ( ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) → ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
69 65 68 mpan9 ( ( 𝐾 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) → ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
70 69 com12 ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
71 70 adantr ( ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) ∧ 𝑁 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) → ( ( 𝐾 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ∧ 𝐿 ∈ { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
72 64 71 sylbid ( ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) ∧ 𝑁 = { ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ , ⟨ 0 , ( 2nd𝑋 ) ⟩ , ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ } ) → ( ( 𝐾𝑁𝐿𝑁 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
73 60 72 mpdan ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝑁𝐿𝑁 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
74 73 com12 ( ( 𝐾𝑁𝐿𝑁 ) → ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
75 74 expd ( ( 𝐾𝑁𝐿𝑁 ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
76 75 com23 ( ( 𝐾𝑁𝐿𝑁 ) → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( 𝑋𝑉 → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
77 76 com24 ( ( 𝐾𝑁𝐿𝑁 ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
78 77 expd ( ( 𝐾𝑁𝐿𝑁 ) → ( 𝐾𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) ) )
79 78 3impia ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
80 79 expdimp ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑦 ∈ ( 0 ..^ 5 ) → ( 𝑋𝑉 → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
81 80 com23 ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( 𝑋𝑉 → ( 𝑦 ∈ ( 0 ..^ 5 ) → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
82 81 imp31 ( ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) )
83 82 adantl ( ( 𝑥 = 1 ∧ ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) )
84 52 83 sylbid ( ( 𝑥 = 1 ∧ ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) )
85 84 ex ( 𝑥 = 1 → ( ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
86 49 85 jaoi ( ( 𝑥 = 0 ∨ 𝑥 = 1 ) → ( ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
87 17 86 sylbi ( 𝑥 ∈ { 0 , 1 } → ( ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
88 87 expd ( 𝑥 ∈ { 0 , 1 } → ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) → ( 𝑦 ∈ ( 0 ..^ 5 ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
89 88 com12 ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) → ( 𝑥 ∈ { 0 , 1 } → ( 𝑦 ∈ ( 0 ..^ 5 ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )
90 89 impd ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) → ( ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
91 90 rexlimdvv ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) → ( ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ ( 0 ..^ 5 ) 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) )
92 15 91 mpd ( ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ∧ 𝑋𝑉 ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) )
93 7 92 mpidan ( ( ( 𝐾𝑁𝐿𝑁𝐾𝐿 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) )