Metamath Proof Explorer


Theorem pgnbgreunbgrlem4

Description: Lemma 4 for pgnbgreunbgr . (Contributed by AV, 20-Nov-2025)

Ref Expression
Hypotheses pgnbgreunbgr.g 𝐺 = ( 5 gPetersenGr 2 )
pgnbgreunbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
pgnbgreunbgr.e 𝐸 = ( Edg ‘ 𝐺 )
pgnbgreunbgr.n 𝑁 = ( 𝐺 NeighbVtx 𝑋 )
Assertion pgnbgreunbgrlem4 ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) → ( ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) → ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )

Proof

Step Hyp Ref Expression
1 pgnbgreunbgr.g 𝐺 = ( 5 gPetersenGr 2 )
2 pgnbgreunbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
3 pgnbgreunbgr.e 𝐸 = ( Edg ‘ 𝐺 )
4 pgnbgreunbgr.n 𝑁 = ( 𝐺 NeighbVtx 𝑋 )
5 1ex 1 ∈ V
6 vex 𝑦 ∈ V
7 5 6 op2ndd ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( 2nd𝑋 ) = 𝑦 )
8 oveq1 ( ( 2nd𝑋 ) = 𝑦 → ( ( 2nd𝑋 ) + 2 ) = ( 𝑦 + 2 ) )
9 8 oveq1d ( ( 2nd𝑋 ) = 𝑦 → ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) = ( ( 𝑦 + 2 ) mod 5 ) )
10 9 opeq2d ( ( 2nd𝑋 ) = 𝑦 → ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ )
11 10 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ↔ 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) )
12 opeq2 ( ( 2nd𝑋 ) = 𝑦 → ⟨ 0 , ( 2nd𝑋 ) ⟩ = ⟨ 0 , 𝑦 ⟩ )
13 12 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ↔ 𝐿 = ⟨ 0 , 𝑦 ⟩ ) )
14 oveq1 ( ( 2nd𝑋 ) = 𝑦 → ( ( 2nd𝑋 ) − 2 ) = ( 𝑦 − 2 ) )
15 14 oveq1d ( ( 2nd𝑋 ) = 𝑦 → ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) )
16 15 opeq2d ( ( 2nd𝑋 ) = 𝑦 → ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ )
17 16 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ↔ 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) )
18 11 13 17 3orbi123d ( ( 2nd𝑋 ) = 𝑦 → ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ↔ ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ) )
19 10 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ↔ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) )
20 12 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ↔ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) )
21 16 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ↔ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) )
22 19 20 21 3orbi123d ( ( 2nd𝑋 ) = 𝑦 → ( ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ↔ ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ) )
23 18 22 anbi12d ( ( 2nd𝑋 ) = 𝑦 → ( ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ) ↔ ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ) ) )
24 simpr ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ )
25 simpl ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ )
26 24 25 neeq12d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( 𝐾𝐿 ↔ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ≠ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) )
27 eqid ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩
28 eqneqall ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ≠ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
29 27 28 ax-mp ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ≠ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
30 26 29 biimtrdi ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( 𝐾𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
31 30 impd ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
32 31 ex ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
33 prcom { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ }
34 33 eleq1i ( { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 )
35 5eluz3 5 ∈ ( ℤ ‘ 3 )
36 pglem 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
37 eqid ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
38 eqid ( 0 ..^ 5 ) = ( 0 ..^ 5 )
39 37 38 1 3 gpgedgiov ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 𝑦 ∈ ( 0 ..^ 5 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸𝑦 = 𝑏 ) )
40 35 36 39 mpanl12 ( ( 𝑦 ∈ ( 0 ..^ 5 ) ∧ 𝑏 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸𝑦 = 𝑏 ) )
41 40 ancoms ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸𝑦 = 𝑏 ) )
42 34 41 bitrid ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸𝑦 = 𝑏 ) )
43 opeq2 ( 𝑦 = 𝑏 → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ )
44 42 43 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
45 44 adantld ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
46 preq1 ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → { 𝐾 , ⟨ 1 , 𝑏 ⟩ } = { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } )
47 46 eleq1d ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ) )
48 preq2 ( 𝐿 = ⟨ 0 , 𝑦 ⟩ → { ⟨ 1 , 𝑏 ⟩ , 𝐿 } = { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } )
49 48 eleq1d ( 𝐿 = ⟨ 0 , 𝑦 ⟩ → ( { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) )
50 47 49 bi2anan9r ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) ) )
51 50 imbi1d ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
52 45 51 imbitrrid ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
53 52 adantld ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
54 53 ex ( 𝐿 = ⟨ 0 , 𝑦 ⟩ → ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
55 prcom { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } = { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ }
56 55 eleq1i ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 )
57 prcom { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } = { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ }
58 57 eleq1i ( { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 )
59 56 58 anbi12ci ( ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
60 5nn 5 ∈ ℕ
61 60 nnzi 5 ∈ ℤ
62 uzid ( 5 ∈ ℤ → 5 ∈ ( ℤ ‘ 5 ) )
63 61 62 ax-mp 5 ∈ ( ℤ ‘ 5 )
64 4t2e8 ( 4 · 2 ) = 8
65 64 oveq1i ( ( 4 · 2 ) mod 5 ) = ( 8 mod 5 )
66 8mod5e3 ( 8 mod 5 ) = 3
67 65 66 eqtri ( ( 4 · 2 ) mod 5 ) = 3
68 3ne0 3 ≠ 0
69 67 68 eqnetri ( ( 4 · 2 ) mod 5 ) ≠ 0
70 36 69 pm3.2i ( 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 )
71 37 38 1 3 gpgedg2iv ( ( 5 ∈ ( ℤ ‘ 5 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ 𝑏 = 𝑦 ) )
72 63 70 71 mp3an13 ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ 𝑏 = 𝑦 ) )
73 59 72 bitrid ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ 𝑏 = 𝑦 ) )
74 43 eqcoms ( 𝑏 = 𝑦 → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ )
75 73 74 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
76 preq2 ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → { ⟨ 1 , 𝑏 ⟩ , 𝐿 } = { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } )
77 76 eleq1d ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
78 47 77 bi2anan9r ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
79 78 imbi1d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
80 75 79 imbitrrid ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
81 80 adantld ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
82 81 ex ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
83 32 54 82 3jaoi ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
84 41 43 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
85 84 adantrd ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
86 preq1 ( 𝐾 = ⟨ 0 , 𝑦 ⟩ → { 𝐾 , ⟨ 1 , 𝑏 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } )
87 86 eleq1d ( 𝐾 = ⟨ 0 , 𝑦 ⟩ → ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ) )
88 preq2 ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → { ⟨ 1 , 𝑏 ⟩ , 𝐿 } = { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } )
89 88 eleq1d ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
90 87 89 bi2anan9r ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
91 90 imbi1d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
92 85 91 imbitrrid ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
93 92 adantld ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
94 93 ex ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 0 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
95 simpr ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → 𝐾 = ⟨ 0 , 𝑦 ⟩ )
96 simpl ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → 𝐿 = ⟨ 0 , 𝑦 ⟩ )
97 95 96 neeq12d ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( 𝐾𝐿 ↔ ⟨ 0 , 𝑦 ⟩ ≠ ⟨ 0 , 𝑦 ⟩ ) )
98 eqid ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑦
99 eqneqall ( ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑦 ⟩ → ( ⟨ 0 , 𝑦 ⟩ ≠ ⟨ 0 , 𝑦 ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
100 98 99 ax-mp ( ⟨ 0 , 𝑦 ⟩ ≠ ⟨ 0 , 𝑦 ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
101 97 100 biimtrdi ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( 𝐾𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
102 101 impd ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
103 102 ex ( 𝐿 = ⟨ 0 , 𝑦 ⟩ → ( 𝐾 = ⟨ 0 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
104 84 adantrd ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
105 86 adantl ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → { 𝐾 , ⟨ 1 , 𝑏 ⟩ } = { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } )
106 105 eleq1d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ) )
107 76 adantr ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → { ⟨ 1 , 𝑏 ⟩ , 𝐿 } = { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } )
108 107 eleq1d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
109 106 108 anbi12d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
110 109 imbi1d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
111 104 110 imbitrrid ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
112 111 adantld ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
113 112 ex ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 0 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
114 94 103 113 3jaoi ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( 𝐾 = ⟨ 0 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
115 66 68 eqnetri ( 8 mod 5 ) ≠ 0
116 65 115 eqnetri ( ( 4 · 2 ) mod 5 ) ≠ 0
117 simpll ( ( ( 5 ∈ ( ℤ ‘ 5 ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → 5 ∈ ( ℤ ‘ 5 ) )
118 simpr ( ( ( 5 ∈ ( ℤ ‘ 5 ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) )
119 36 a1i ( 5 ∈ ( ℤ ‘ 5 ) → 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
120 119 anim1i ( ( 5 ∈ ( ℤ ‘ 5 ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 ) → ( 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 ) )
121 120 adantr ( ( ( 5 ∈ ( ℤ ‘ 5 ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 ) )
122 117 118 121 71 syl3anc ( ( ( 5 ∈ ( ℤ ‘ 5 ) ∧ ( ( 4 · 2 ) mod 5 ) ≠ 0 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ 𝑏 = 𝑦 ) )
123 63 116 122 mpanl12 ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ 𝑏 = 𝑦 ) )
124 123 74 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
125 124 adantl ( ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ≠ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
126 125 a1i ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ≠ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
127 simpl ( ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ )
128 simpr ( ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ )
129 127 128 neeq12d ( ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ∧ 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) → ( 𝐾𝐿 ↔ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ≠ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) )
130 129 ancoms ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( 𝐾𝐿 ↔ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ≠ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ) )
131 130 anbi1d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ↔ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ≠ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ) )
132 preq1 ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → { 𝐾 , ⟨ 1 , 𝑏 ⟩ } = { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } )
133 132 eleq1d ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ) )
134 133 89 bi2anan9r ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
135 134 imbi1d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
136 126 131 135 3imtr4d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
137 136 ex ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
138 39 ancom2s ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸𝑦 = 𝑏 ) )
139 equcom ( 𝑦 = 𝑏𝑏 = 𝑦 )
140 138 139 bitrdi ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { ⟨ 0 , 𝑦 ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸𝑏 = 𝑦 ) )
141 34 140 bitrid ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸𝑏 = 𝑦 ) )
142 35 36 141 mpanl12 ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸𝑏 = 𝑦 ) )
143 142 74 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
144 143 adantld ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
145 144 adantl ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
146 132 adantl ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → { 𝐾 , ⟨ 1 , 𝑏 ⟩ } = { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } )
147 146 eleq1d ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ) )
148 49 adantr ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) )
149 147 148 anbi12d ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) ) )
150 149 imbi1d ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , ⟨ 0 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
151 145 150 imbitrrid ( ( 𝐿 = ⟨ 0 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
152 151 ex ( 𝐿 = ⟨ 0 , 𝑦 ⟩ → ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
153 eqeq2 ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = 𝐿 → ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ↔ 𝐾 = 𝐿 ) )
154 153 eqcoms ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ↔ 𝐾 = 𝐿 ) )
155 eqneqall ( 𝐾 = 𝐿 → ( 𝐾𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
156 155 impd ( 𝐾 = 𝐿 → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
157 154 156 biimtrdi ( 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
158 137 152 157 3jaoi ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
159 83 114 158 3jaod ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
160 159 imp ( ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , 𝑦 ⟩ ∨ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
161 23 160 biimtrdi ( ( 2nd𝑋 ) = 𝑦 → ( ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
162 7 161 syl ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
163 eqeq1 ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( 𝑋 = ⟨ 1 , 𝑏 ⟩ ↔ ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) )
164 163 imbi2d ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ↔ ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) )
165 164 imbi2d ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ↔ ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑏 ⟩ ) ) ) )
166 162 165 sylibrd ( 𝑋 = ⟨ 1 , 𝑦 ⟩ → ( ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
167 166 adantl ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) )
168 167 expdcom ( ( 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) → ( ( 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) + 2 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( ( ( 2nd𝑋 ) − 2 ) mod 5 ) ⟩ ) → ( ( 𝑋𝑉𝑋 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 1 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 1 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 1 , 𝑏 ⟩ ) ) ) ) )