| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpexle1lem.1 |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) |
| 2 |
|
lhpexle1lem.2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) |
| 3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) |
| 4 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → 𝑝 ≤ 𝑊 ) |
| 5 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → 𝜓 ) |
| 6 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → 𝑝 ∈ 𝐴 ) |
| 7 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → ¬ 𝑋 ∈ 𝐴 ) |
| 8 |
|
nelne2 |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐴 ) → 𝑝 ≠ 𝑋 ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → 𝑝 ≠ 𝑋 ) |
| 10 |
4 5 9
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) |
| 11 |
10
|
ex |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) → ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) ) |
| 12 |
11
|
reximdva |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) ) |
| 13 |
3 12
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝐴 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) |
| 15 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → 𝑝 ≤ 𝑊 ) |
| 16 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → 𝜓 ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → ¬ 𝑋 ≤ 𝑊 ) |
| 18 |
|
nbrne2 |
⊢ ( ( 𝑝 ≤ 𝑊 ∧ ¬ 𝑋 ≤ 𝑊 ) → 𝑝 ≠ 𝑋 ) |
| 19 |
15 17 18
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → 𝑝 ≠ 𝑋 ) |
| 20 |
15 16 19
|
3jca |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) ) → ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) |
| 21 |
20
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) → ( ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) → ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) ) |
| 22 |
21
|
reximdv |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) ) |
| 23 |
14 22
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ≤ 𝑊 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) |
| 24 |
13 23 2
|
pm2.61dda |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑊 ∧ 𝜓 ∧ 𝑝 ≠ 𝑋 ) ) |