Step |
Hyp |
Ref |
Expression |
1 |
|
lidlnz.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidlnz.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
1 2
|
lidl0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 0 ∈ 𝐼 ) |
4 |
3
|
snssd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → { 0 } ⊆ 𝐼 ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → { 0 } ⊆ 𝐼 ) |
6 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ≠ { 0 } ) |
7 |
6
|
necomd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → { 0 } ≠ 𝐼 ) |
8 |
|
df-pss |
⊢ ( { 0 } ⊊ 𝐼 ↔ ( { 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼 ) ) |
9 |
5 7 8
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → { 0 } ⊊ 𝐼 ) |
10 |
|
pssnel |
⊢ ( { 0 } ⊊ 𝐼 → ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ) |
12 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
13 |
12
|
necon3bbii |
⊢ ( ¬ 𝑥 ∈ { 0 } ↔ 𝑥 ≠ 0 ) |
14 |
13
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ( 𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 ) ) |
15 |
14
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 ) ) |
16 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐼 𝑥 ≠ 0 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 ) ) |
17 |
15 16
|
bitr4i |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ∃ 𝑥 ∈ 𝐼 𝑥 ≠ 0 ) |
18 |
11 17
|
sylib |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃ 𝑥 ∈ 𝐼 𝑥 ≠ 0 ) |