| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspval.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lspval.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspprcl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lspprcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
lspprcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
lsptpcl.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 8 |
|
df-tp |
⊢ { 𝑋 , 𝑌 , 𝑍 } = ( { 𝑋 , 𝑌 } ∪ { 𝑍 } ) |
| 9 |
5 6
|
prssd |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 10 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑍 } ⊆ 𝑉 ) |
| 11 |
9 10
|
unssd |
⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∪ { 𝑍 } ) ⊆ 𝑉 ) |
| 12 |
8 11
|
eqsstrid |
⊢ ( 𝜑 → { 𝑋 , 𝑌 , 𝑍 } ⊆ 𝑉 ) |
| 13 |
1 2 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 , 𝑍 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ∈ 𝑆 ) |
| 14 |
4 12 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ∈ 𝑆 ) |