| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspval.v |
|- V = ( Base ` W ) |
| 2 |
|
lspval.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
lspval.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspprcl.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
lspprcl.x |
|- ( ph -> X e. V ) |
| 6 |
|
lspprcl.y |
|- ( ph -> Y e. V ) |
| 7 |
|
lsptpcl.z |
|- ( ph -> Z e. V ) |
| 8 |
|
df-tp |
|- { X , Y , Z } = ( { X , Y } u. { Z } ) |
| 9 |
5 6
|
prssd |
|- ( ph -> { X , Y } C_ V ) |
| 10 |
7
|
snssd |
|- ( ph -> { Z } C_ V ) |
| 11 |
9 10
|
unssd |
|- ( ph -> ( { X , Y } u. { Z } ) C_ V ) |
| 12 |
8 11
|
eqsstrid |
|- ( ph -> { X , Y , Z } C_ V ) |
| 13 |
1 2 3
|
lspcl |
|- ( ( W e. LMod /\ { X , Y , Z } C_ V ) -> ( N ` { X , Y , Z } ) e. S ) |
| 14 |
4 12 13
|
syl2anc |
|- ( ph -> ( N ` { X , Y , Z } ) e. S ) |