| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsw | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  0 )  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 3 |  | fvoveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  0  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑊 ‘ ( 0  −  1 ) ) ) | 
						
							| 4 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝑉  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 5 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 6 |  | nnnle0 | ⊢ ( 1  ∈  ℕ  →  ¬  1  ≤  0 ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ¬  1  ≤  0 | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 10 | 8 9 | subge0i | ⊢ ( 0  ≤  ( 0  −  1 )  ↔  1  ≤  0 ) | 
						
							| 11 | 7 10 | mtbir | ⊢ ¬  0  ≤  ( 0  −  1 ) | 
						
							| 12 |  | elfzole1 | ⊢ ( ( 0  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  0  ≤  ( 0  −  1 ) ) | 
						
							| 13 | 11 12 | mto | ⊢ ¬  ( 0  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) | 
						
							| 14 |  | eleq2 | ⊢ ( dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 0  −  1 )  ∈  dom  𝑊  ↔  ( 0  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 15 | 13 14 | mtbiri | ⊢ ( dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ¬  ( 0  −  1 )  ∈  dom  𝑊 ) | 
						
							| 16 |  | ndmfv | ⊢ ( ¬  ( 0  −  1 )  ∈  dom  𝑊  →  ( 𝑊 ‘ ( 0  −  1 ) )  =  ∅ ) | 
						
							| 17 | 4 15 16 | 3syl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊 ‘ ( 0  −  1 ) )  =  ∅ ) | 
						
							| 18 | 3 17 | sylan9eqr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  0 )  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ∅ ) | 
						
							| 19 | 2 18 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  0 )  →  ( lastS ‘ 𝑊 )  =  ∅ ) |