Metamath Proof Explorer


Theorem lvolnltN

Description: Two lattice volumes cannot satisfy the less than relation. (Contributed by NM, 12-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lvolnlt.s < = ( lt ‘ 𝐾 )
lvolnlt.v 𝑉 = ( LVols ‘ 𝐾 )
Assertion lvolnltN ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉 ) → ¬ 𝑋 < 𝑌 )

Proof

Step Hyp Ref Expression
1 lvolnlt.s < = ( lt ‘ 𝐾 )
2 lvolnlt.v 𝑉 = ( LVols ‘ 𝐾 )
3 1 pltirr ( ( 𝐾 ∈ HL ∧ 𝑋𝑉 ) → ¬ 𝑋 < 𝑋 )
4 3 3adant3 ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉 ) → ¬ 𝑋 < 𝑋 )
5 breq2 ( 𝑋 = 𝑌 → ( 𝑋 < 𝑋𝑋 < 𝑌 ) )
6 5 notbid ( 𝑋 = 𝑌 → ( ¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌 ) )
7 4 6 syl5ibcom ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 = 𝑌 → ¬ 𝑋 < 𝑌 ) )
8 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
9 8 1 pltle ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 < 𝑌𝑋 ( le ‘ 𝐾 ) 𝑌 ) )
10 8 2 lvolcmp ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑌𝑋 = 𝑌 ) )
11 9 10 sylibd ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 < 𝑌𝑋 = 𝑌 ) )
12 11 necon3ad ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋𝑌 → ¬ 𝑋 < 𝑌 ) )
13 7 12 pm2.61dne ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑉 ) → ¬ 𝑋 < 𝑌 )