Step |
Hyp |
Ref |
Expression |
1 |
|
lvolnlt.s |
⊢ < = ( lt ‘ 𝐾 ) |
2 |
|
lvolnlt.v |
⊢ 𝑉 = ( LVols ‘ 𝐾 ) |
3 |
1
|
pltirr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ) → ¬ 𝑋 < 𝑋 ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ¬ 𝑋 < 𝑋 ) |
5 |
|
breq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 < 𝑋 ↔ 𝑋 < 𝑌 ) ) |
6 |
5
|
notbid |
⊢ ( 𝑋 = 𝑌 → ( ¬ 𝑋 < 𝑋 ↔ ¬ 𝑋 < 𝑌 ) ) |
7 |
4 6
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 = 𝑌 → ¬ 𝑋 < 𝑌 ) ) |
8 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
9 |
8 1
|
pltle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) |
10 |
8 2
|
lvolcmp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ↔ 𝑋 = 𝑌 ) ) |
11 |
9 10
|
sylibd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 < 𝑌 → 𝑋 = 𝑌 ) ) |
12 |
11
|
necon3ad |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ≠ 𝑌 → ¬ 𝑋 < 𝑌 ) ) |
13 |
7 12
|
pm2.61dne |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ¬ 𝑋 < 𝑌 ) |