| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz | ⊢ ( 𝑁  ∈   Odd   →  𝑁  ∈  ℤ ) | 
						
							| 2 | 1 | zcnd | ⊢ ( 𝑁  ∈   Odd   →  𝑁  ∈  ℂ ) | 
						
							| 3 |  | npcan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( 𝑁  ∈  ℂ  →  𝑁  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝑁  ∈   Odd   →  𝑁  =  ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑁  ∈   Odd   →  ( - 1 ↑ 𝑁 )  =  ( - 1 ↑ ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 7 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑁  ∈   Odd   →  - 1  ∈  ℂ ) | 
						
							| 9 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑁  ∈   Odd   →  - 1  ≠  0 ) | 
						
							| 11 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝑁  ∈   Odd   →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 13 | 8 10 12 | expp1zd | ⊢ ( 𝑁  ∈   Odd   →  ( - 1 ↑ ( ( 𝑁  −  1 )  +  1 ) )  =  ( ( - 1 ↑ ( 𝑁  −  1 ) )  ·  - 1 ) ) | 
						
							| 14 |  | oddm1eveni | ⊢ ( 𝑁  ∈   Odd   →  ( 𝑁  −  1 )  ∈   Even  ) | 
						
							| 15 |  | m1expevenALTV | ⊢ ( ( 𝑁  −  1 )  ∈   Even   →  ( - 1 ↑ ( 𝑁  −  1 ) )  =  1 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑁  ∈   Odd   →  ( - 1 ↑ ( 𝑁  −  1 ) )  =  1 ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑁  ∈   Odd   →  ( ( - 1 ↑ ( 𝑁  −  1 ) )  ·  - 1 )  =  ( 1  ·  - 1 ) ) | 
						
							| 18 | 8 | mullidd | ⊢ ( 𝑁  ∈   Odd   →  ( 1  ·  - 1 )  =  - 1 ) | 
						
							| 19 | 17 18 | eqtrd | ⊢ ( 𝑁  ∈   Odd   →  ( ( - 1 ↑ ( 𝑁  −  1 ) )  ·  - 1 )  =  - 1 ) | 
						
							| 20 | 6 13 19 | 3eqtrd | ⊢ ( 𝑁  ∈   Odd   →  ( - 1 ↑ 𝑁 )  =  - 1 ) |