| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  =  ( 2  ·  𝑖 )  ↔  𝑁  =  ( 2  ·  𝑖 ) ) ) | 
						
							| 2 | 1 | rexbidv | ⊢ ( 𝑛  =  𝑁  →  ( ∃ 𝑖  ∈  ℤ 𝑛  =  ( 2  ·  𝑖 )  ↔  ∃ 𝑖  ∈  ℤ 𝑁  =  ( 2  ·  𝑖 ) ) ) | 
						
							| 3 |  | dfeven4 | ⊢  Even   =  { 𝑛  ∈  ℤ  ∣  ∃ 𝑖  ∈  ℤ 𝑛  =  ( 2  ·  𝑖 ) } | 
						
							| 4 | 2 3 | elrab2 | ⊢ ( 𝑁  ∈   Even   ↔  ( 𝑁  ∈  ℤ  ∧  ∃ 𝑖  ∈  ℤ 𝑁  =  ( 2  ·  𝑖 ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑁  =  ( 2  ·  𝑖 )  →  ( - 1 ↑ 𝑁 )  =  ( - 1 ↑ ( 2  ·  𝑖 ) ) ) | 
						
							| 6 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑖  ∈  ℤ  →  - 1  ∈  ℂ ) | 
						
							| 8 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑖  ∈  ℤ  →  - 1  ≠  0 ) | 
						
							| 10 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑖  ∈  ℤ  →  2  ∈  ℤ ) | 
						
							| 12 |  | id | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℤ ) | 
						
							| 13 |  | expmulz | ⊢ ( ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0 )  ∧  ( 2  ∈  ℤ  ∧  𝑖  ∈  ℤ ) )  →  ( - 1 ↑ ( 2  ·  𝑖 ) )  =  ( ( - 1 ↑ 2 ) ↑ 𝑖 ) ) | 
						
							| 14 | 7 9 11 12 13 | syl22anc | ⊢ ( 𝑖  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑖 ) )  =  ( ( - 1 ↑ 2 ) ↑ 𝑖 ) ) | 
						
							| 15 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 16 | 15 | oveq1i | ⊢ ( ( - 1 ↑ 2 ) ↑ 𝑖 )  =  ( 1 ↑ 𝑖 ) | 
						
							| 17 |  | 1exp | ⊢ ( 𝑖  ∈  ℤ  →  ( 1 ↑ 𝑖 )  =  1 ) | 
						
							| 18 | 16 17 | eqtrid | ⊢ ( 𝑖  ∈  ℤ  →  ( ( - 1 ↑ 2 ) ↑ 𝑖 )  =  1 ) | 
						
							| 19 | 14 18 | eqtrd | ⊢ ( 𝑖  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑖 ) )  =  1 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( - 1 ↑ ( 2  ·  𝑖 ) )  =  1 ) | 
						
							| 21 | 5 20 | sylan9eqr | ⊢ ( ( ( 𝑁  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝑁  =  ( 2  ·  𝑖 ) )  →  ( - 1 ↑ 𝑁 )  =  1 ) | 
						
							| 22 | 21 | rexlimdva2 | ⊢ ( 𝑁  ∈  ℤ  →  ( ∃ 𝑖  ∈  ℤ 𝑁  =  ( 2  ·  𝑖 )  →  ( - 1 ↑ 𝑁 )  =  1 ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ∃ 𝑖  ∈  ℤ 𝑁  =  ( 2  ·  𝑖 ) )  →  ( - 1 ↑ 𝑁 )  =  1 ) | 
						
							| 24 | 4 23 | sylbi | ⊢ ( 𝑁  ∈   Even   →  ( - 1 ↑ 𝑁 )  =  1 ) |