Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 = ( 2 · 𝑖 ) ↔ 𝑁 = ( 2 · 𝑖 ) ) ) |
2 |
1
|
rexbidv |
⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑖 ∈ ℤ 𝑛 = ( 2 · 𝑖 ) ↔ ∃ 𝑖 ∈ ℤ 𝑁 = ( 2 · 𝑖 ) ) ) |
3 |
|
dfeven4 |
⊢ Even = { 𝑛 ∈ ℤ ∣ ∃ 𝑖 ∈ ℤ 𝑛 = ( 2 · 𝑖 ) } |
4 |
2 3
|
elrab2 |
⊢ ( 𝑁 ∈ Even ↔ ( 𝑁 ∈ ℤ ∧ ∃ 𝑖 ∈ ℤ 𝑁 = ( 2 · 𝑖 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑁 = ( 2 · 𝑖 ) → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( 2 · 𝑖 ) ) ) |
6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
7 |
6
|
a1i |
⊢ ( 𝑖 ∈ ℤ → - 1 ∈ ℂ ) |
8 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
9 |
8
|
a1i |
⊢ ( 𝑖 ∈ ℤ → - 1 ≠ 0 ) |
10 |
|
2z |
⊢ 2 ∈ ℤ |
11 |
10
|
a1i |
⊢ ( 𝑖 ∈ ℤ → 2 ∈ ℤ ) |
12 |
|
id |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℤ ) |
13 |
|
expmulz |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ) → ( - 1 ↑ ( 2 · 𝑖 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑖 ) ) |
14 |
7 9 11 12 13
|
syl22anc |
⊢ ( 𝑖 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑖 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑖 ) ) |
15 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
16 |
15
|
oveq1i |
⊢ ( ( - 1 ↑ 2 ) ↑ 𝑖 ) = ( 1 ↑ 𝑖 ) |
17 |
|
1exp |
⊢ ( 𝑖 ∈ ℤ → ( 1 ↑ 𝑖 ) = 1 ) |
18 |
16 17
|
eqtrid |
⊢ ( 𝑖 ∈ ℤ → ( ( - 1 ↑ 2 ) ↑ 𝑖 ) = 1 ) |
19 |
14 18
|
eqtrd |
⊢ ( 𝑖 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑖 ) ) = 1 ) |
20 |
19
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( - 1 ↑ ( 2 · 𝑖 ) ) = 1 ) |
21 |
5 20
|
sylan9eqr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝑁 = ( 2 · 𝑖 ) ) → ( - 1 ↑ 𝑁 ) = 1 ) |
22 |
21
|
rexlimdva2 |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑖 ∈ ℤ 𝑁 = ( 2 · 𝑖 ) → ( - 1 ↑ 𝑁 ) = 1 ) ) |
23 |
22
|
imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ ∃ 𝑖 ∈ ℤ 𝑁 = ( 2 · 𝑖 ) ) → ( - 1 ↑ 𝑁 ) = 1 ) |
24 |
4 23
|
sylbi |
⊢ ( 𝑁 ∈ Even → ( - 1 ↑ 𝑁 ) = 1 ) |