| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 |  |-  ( n = N -> ( n = ( 2 x. i ) <-> N = ( 2 x. i ) ) ) | 
						
							| 2 | 1 | rexbidv |  |-  ( n = N -> ( E. i e. ZZ n = ( 2 x. i ) <-> E. i e. ZZ N = ( 2 x. i ) ) ) | 
						
							| 3 |  | dfeven4 |  |-  Even = { n e. ZZ | E. i e. ZZ n = ( 2 x. i ) } | 
						
							| 4 | 2 3 | elrab2 |  |-  ( N e. Even <-> ( N e. ZZ /\ E. i e. ZZ N = ( 2 x. i ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( N = ( 2 x. i ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( 2 x. i ) ) ) | 
						
							| 6 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 7 | 6 | a1i |  |-  ( i e. ZZ -> -u 1 e. CC ) | 
						
							| 8 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 9 | 8 | a1i |  |-  ( i e. ZZ -> -u 1 =/= 0 ) | 
						
							| 10 |  | 2z |  |-  2 e. ZZ | 
						
							| 11 | 10 | a1i |  |-  ( i e. ZZ -> 2 e. ZZ ) | 
						
							| 12 |  | id |  |-  ( i e. ZZ -> i e. ZZ ) | 
						
							| 13 |  | expmulz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ i e. ZZ ) ) -> ( -u 1 ^ ( 2 x. i ) ) = ( ( -u 1 ^ 2 ) ^ i ) ) | 
						
							| 14 | 7 9 11 12 13 | syl22anc |  |-  ( i e. ZZ -> ( -u 1 ^ ( 2 x. i ) ) = ( ( -u 1 ^ 2 ) ^ i ) ) | 
						
							| 15 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 16 | 15 | oveq1i |  |-  ( ( -u 1 ^ 2 ) ^ i ) = ( 1 ^ i ) | 
						
							| 17 |  | 1exp |  |-  ( i e. ZZ -> ( 1 ^ i ) = 1 ) | 
						
							| 18 | 16 17 | eqtrid |  |-  ( i e. ZZ -> ( ( -u 1 ^ 2 ) ^ i ) = 1 ) | 
						
							| 19 | 14 18 | eqtrd |  |-  ( i e. ZZ -> ( -u 1 ^ ( 2 x. i ) ) = 1 ) | 
						
							| 20 | 19 | adantl |  |-  ( ( N e. ZZ /\ i e. ZZ ) -> ( -u 1 ^ ( 2 x. i ) ) = 1 ) | 
						
							| 21 | 5 20 | sylan9eqr |  |-  ( ( ( N e. ZZ /\ i e. ZZ ) /\ N = ( 2 x. i ) ) -> ( -u 1 ^ N ) = 1 ) | 
						
							| 22 | 21 | rexlimdva2 |  |-  ( N e. ZZ -> ( E. i e. ZZ N = ( 2 x. i ) -> ( -u 1 ^ N ) = 1 ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( N e. ZZ /\ E. i e. ZZ N = ( 2 x. i ) ) -> ( -u 1 ^ N ) = 1 ) | 
						
							| 24 | 4 23 | sylbi |  |-  ( N e. Even -> ( -u 1 ^ N ) = 1 ) |