| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz |  |-  ( N e. Odd -> N e. ZZ ) | 
						
							| 2 | 1 | zcnd |  |-  ( N e. Odd -> N e. CC ) | 
						
							| 3 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 4 | 3 | eqcomd |  |-  ( N e. CC -> N = ( ( N - 1 ) + 1 ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( N e. Odd -> N = ( ( N - 1 ) + 1 ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( N e. Odd -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( N - 1 ) + 1 ) ) ) | 
						
							| 7 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 8 | 7 | a1i |  |-  ( N e. Odd -> -u 1 e. CC ) | 
						
							| 9 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( N e. Odd -> -u 1 =/= 0 ) | 
						
							| 11 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 12 | 1 11 | syl |  |-  ( N e. Odd -> ( N - 1 ) e. ZZ ) | 
						
							| 13 | 8 10 12 | expp1zd |  |-  ( N e. Odd -> ( -u 1 ^ ( ( N - 1 ) + 1 ) ) = ( ( -u 1 ^ ( N - 1 ) ) x. -u 1 ) ) | 
						
							| 14 |  | oddm1eveni |  |-  ( N e. Odd -> ( N - 1 ) e. Even ) | 
						
							| 15 |  | m1expevenALTV |  |-  ( ( N - 1 ) e. Even -> ( -u 1 ^ ( N - 1 ) ) = 1 ) | 
						
							| 16 | 14 15 | syl |  |-  ( N e. Odd -> ( -u 1 ^ ( N - 1 ) ) = 1 ) | 
						
							| 17 | 16 | oveq1d |  |-  ( N e. Odd -> ( ( -u 1 ^ ( N - 1 ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) | 
						
							| 18 | 8 | mullidd |  |-  ( N e. Odd -> ( 1 x. -u 1 ) = -u 1 ) | 
						
							| 19 | 17 18 | eqtrd |  |-  ( N e. Odd -> ( ( -u 1 ^ ( N - 1 ) ) x. -u 1 ) = -u 1 ) | 
						
							| 20 | 6 13 19 | 3eqtrd |  |-  ( N e. Odd -> ( -u 1 ^ N ) = -u 1 ) |