Step |
Hyp |
Ref |
Expression |
1 |
|
map0cor.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
map0cor.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
biid |
⊢ ( 𝐴 ≠ ∅ ↔ 𝐴 ≠ ∅ ) |
4 |
3
|
necon2bbii |
⊢ ( 𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅ ) |
5 |
4
|
imbi2i |
⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ( 𝐵 = ∅ → ¬ 𝐴 ≠ ∅ ) ) |
6 |
|
imnan |
⊢ ( ( 𝐵 = ∅ → ¬ 𝐴 ≠ ∅ ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐴 ≠ ∅ ) ) |
7 |
5 6
|
bitri |
⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐴 ≠ ∅ ) ) |
8 |
|
map0g |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 ↑m 𝐴 ) = ∅ ↔ ( 𝐵 = ∅ ∧ 𝐴 ≠ ∅ ) ) ) |
9 |
8
|
notbid |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ¬ ( 𝐵 ↑m 𝐴 ) = ∅ ↔ ¬ ( 𝐵 = ∅ ∧ 𝐴 ≠ ∅ ) ) ) |
10 |
7 9
|
bitr4id |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ¬ ( 𝐵 ↑m 𝐴 ) = ∅ ) ) |
11 |
|
neq0 |
⊢ ( ¬ ( 𝐵 ↑m 𝐴 ) = ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
12 |
11
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ¬ ( 𝐵 ↑m 𝐴 ) = ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
13 |
|
elmapg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
14 |
13
|
exbidv |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
15 |
10 12 14
|
3bitrd |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
16 |
2 1 15
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) |