| Step | Hyp | Ref | Expression | 
						
							| 1 |  | map0cor.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | map0cor.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 3 |  | biid | ⊢ ( 𝐴  ≠  ∅  ↔  𝐴  ≠  ∅ ) | 
						
							| 4 | 3 | necon2bbii | ⊢ ( 𝐴  =  ∅  ↔  ¬  𝐴  ≠  ∅ ) | 
						
							| 5 | 4 | imbi2i | ⊢ ( ( 𝐵  =  ∅  →  𝐴  =  ∅ )  ↔  ( 𝐵  =  ∅  →  ¬  𝐴  ≠  ∅ ) ) | 
						
							| 6 |  | imnan | ⊢ ( ( 𝐵  =  ∅  →  ¬  𝐴  ≠  ∅ )  ↔  ¬  ( 𝐵  =  ∅  ∧  𝐴  ≠  ∅ ) ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( ( 𝐵  =  ∅  →  𝐴  =  ∅ )  ↔  ¬  ( 𝐵  =  ∅  ∧  𝐴  ≠  ∅ ) ) | 
						
							| 8 |  | map0g | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐵  ↑m  𝐴 )  =  ∅  ↔  ( 𝐵  =  ∅  ∧  𝐴  ≠  ∅ ) ) ) | 
						
							| 9 | 8 | notbid | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉 )  →  ( ¬  ( 𝐵  ↑m  𝐴 )  =  ∅  ↔  ¬  ( 𝐵  =  ∅  ∧  𝐴  ≠  ∅ ) ) ) | 
						
							| 10 | 7 9 | bitr4id | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐵  =  ∅  →  𝐴  =  ∅ )  ↔  ¬  ( 𝐵  ↑m  𝐴 )  =  ∅ ) ) | 
						
							| 11 |  | neq0 | ⊢ ( ¬  ( 𝐵  ↑m  𝐴 )  =  ∅  ↔  ∃ 𝑓 𝑓  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉 )  →  ( ¬  ( 𝐵  ↑m  𝐴 )  =  ∅  ↔  ∃ 𝑓 𝑓  ∈  ( 𝐵  ↑m  𝐴 ) ) ) | 
						
							| 13 |  | elmapg | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉 )  →  ( 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↔  𝑓 : 𝐴 ⟶ 𝐵 ) ) | 
						
							| 14 | 13 | exbidv | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉 )  →  ( ∃ 𝑓 𝑓  ∈  ( 𝐵  ↑m  𝐴 )  ↔  ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) | 
						
							| 15 | 10 12 14 | 3bitrd | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐵  =  ∅  →  𝐴  =  ∅ )  ↔  ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) | 
						
							| 16 | 2 1 15 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  =  ∅  →  𝐴  =  ∅ )  ↔  ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) |