| Step |
Hyp |
Ref |
Expression |
| 1 |
|
map0cor.1 |
|- ( ph -> A e. V ) |
| 2 |
|
map0cor.2 |
|- ( ph -> B e. W ) |
| 3 |
|
biid |
|- ( A =/= (/) <-> A =/= (/) ) |
| 4 |
3
|
necon2bbii |
|- ( A = (/) <-> -. A =/= (/) ) |
| 5 |
4
|
imbi2i |
|- ( ( B = (/) -> A = (/) ) <-> ( B = (/) -> -. A =/= (/) ) ) |
| 6 |
|
imnan |
|- ( ( B = (/) -> -. A =/= (/) ) <-> -. ( B = (/) /\ A =/= (/) ) ) |
| 7 |
5 6
|
bitri |
|- ( ( B = (/) -> A = (/) ) <-> -. ( B = (/) /\ A =/= (/) ) ) |
| 8 |
|
map0g |
|- ( ( B e. W /\ A e. V ) -> ( ( B ^m A ) = (/) <-> ( B = (/) /\ A =/= (/) ) ) ) |
| 9 |
8
|
notbid |
|- ( ( B e. W /\ A e. V ) -> ( -. ( B ^m A ) = (/) <-> -. ( B = (/) /\ A =/= (/) ) ) ) |
| 10 |
7 9
|
bitr4id |
|- ( ( B e. W /\ A e. V ) -> ( ( B = (/) -> A = (/) ) <-> -. ( B ^m A ) = (/) ) ) |
| 11 |
|
neq0 |
|- ( -. ( B ^m A ) = (/) <-> E. f f e. ( B ^m A ) ) |
| 12 |
11
|
a1i |
|- ( ( B e. W /\ A e. V ) -> ( -. ( B ^m A ) = (/) <-> E. f f e. ( B ^m A ) ) ) |
| 13 |
|
elmapg |
|- ( ( B e. W /\ A e. V ) -> ( f e. ( B ^m A ) <-> f : A --> B ) ) |
| 14 |
13
|
exbidv |
|- ( ( B e. W /\ A e. V ) -> ( E. f f e. ( B ^m A ) <-> E. f f : A --> B ) ) |
| 15 |
10 12 14
|
3bitrd |
|- ( ( B e. W /\ A e. V ) -> ( ( B = (/) -> A = (/) ) <-> E. f f : A --> B ) ) |
| 16 |
2 1 15
|
syl2anc |
|- ( ph -> ( ( B = (/) -> A = (/) ) <-> E. f f : A --> B ) ) |