Metamath Proof Explorer


Theorem mapdh7cN

Description: Part (7) of Baer p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh7.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh7.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.v 𝑉 = ( Base ‘ 𝑈 )
mapdh7.s = ( -g𝑈 )
mapdh7.o 0 = ( 0g𝑈 )
mapdh7.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh7.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.d 𝐷 = ( Base ‘ 𝐶 )
mapdh7.r 𝑅 = ( -g𝐶 )
mapdh7.q 𝑄 = ( 0g𝐶 )
mapdh7.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh7.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh7.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh7.f ( 𝜑𝐹𝐷 )
mapdh7.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh7.x ( 𝜑𝑢 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.y ( 𝜑𝑣 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.z ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.ne ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) )
mapdh7.wn ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) )
mapdh7a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑣 ⟩ ) = 𝐺 )
Assertion mapdh7cN ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑣 , 𝐺 , 𝑢 ⟩ ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 mapdh7.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh7.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh7.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh7.s = ( -g𝑈 )
5 mapdh7.o 0 = ( 0g𝑈 )
6 mapdh7.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh7.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh7.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh7.r 𝑅 = ( -g𝐶 )
10 mapdh7.q 𝑄 = ( 0g𝐶 )
11 mapdh7.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh7.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh7.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh7.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh7.f ( 𝜑𝐹𝐷 )
16 mapdh7.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh7.x ( 𝜑𝑢 ∈ ( 𝑉 ∖ { 0 } ) )
18 mapdh7.y ( 𝜑𝑣 ∈ ( 𝑉 ∖ { 0 } ) )
19 mapdh7.z ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
20 mapdh7.ne ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) )
21 mapdh7.wn ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) )
22 mapdh7a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑣 ⟩ ) = 𝐺 )
23 18 eldifad ( 𝜑𝑣𝑉 )
24 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 23 20 mapdhcl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑣 ⟩ ) ∈ 𝐷 )
25 22 24 eqeltrrd ( 𝜑𝐺𝐷 )
26 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 18 25 20 mapdheq2 ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑣 ⟩ ) = 𝐺 → ( 𝐼 ‘ ⟨ 𝑣 , 𝐺 , 𝑢 ⟩ ) = 𝐹 ) )
27 22 26 mpd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑣 , 𝐺 , 𝑢 ⟩ ) = 𝐹 )