| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh7.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdh7.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdh7.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | mapdh7.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 5 |  | mapdh7.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | mapdh7.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 7 |  | mapdh7.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | mapdh7.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 9 |  | mapdh7.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 10 |  | mapdh7.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 11 |  | mapdh7.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | mapdh7.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 |  | mapdh7.i | ⊢ 𝐼  =  ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  𝑄 ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) )  −  ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐽 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | 
						
							| 14 |  | mapdh7.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 15 |  | mapdh7.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 16 |  | mapdh7.mn | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) )  =  ( 𝐽 ‘ { 𝐹 } ) ) | 
						
							| 17 |  | mapdh7.x | ⊢ ( 𝜑  →  𝑢  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 18 |  | mapdh7.y | ⊢ ( 𝜑  →  𝑣  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | mapdh7.z | ⊢ ( 𝜑  →  𝑤  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 20 |  | mapdh7.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑢 } )  ≠  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 21 |  | mapdh7.wn | ⊢ ( 𝜑  →  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑢 ,  𝑣 } ) ) | 
						
							| 22 |  | mapdh7a | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑢 ,  𝐹 ,  𝑣 〉 )  =  𝐺 ) | 
						
							| 23 |  | mapdh7.b | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑢 ,  𝐹 ,  𝑤 〉 )  =  𝐸 ) | 
						
							| 24 | 1 2 14 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 25 | 18 | eldifad | ⊢ ( 𝜑  →  𝑣  ∈  𝑉 ) | 
						
							| 26 | 19 | eldifad | ⊢ ( 𝜑  →  𝑤  ∈  𝑉 ) | 
						
							| 27 | 3 5 6 24 17 25 26 20 21 | lspindp1 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑣 } )  ∧  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑤 ,  𝑣 } ) ) ) | 
						
							| 28 | 27 | simprd | ⊢ ( 𝜑  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑤 ,  𝑣 } ) ) | 
						
							| 29 |  | prcom | ⊢ { 𝑣 ,  𝑤 }  =  { 𝑤 ,  𝑣 } | 
						
							| 30 | 29 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑣 ,  𝑤 } )  =  ( 𝑁 ‘ { 𝑤 ,  𝑣 } ) | 
						
							| 31 | 30 | eleq2i | ⊢ ( 𝑢  ∈  ( 𝑁 ‘ { 𝑣 ,  𝑤 } )  ↔  𝑢  ∈  ( 𝑁 ‘ { 𝑤 ,  𝑣 } ) ) | 
						
							| 32 | 28 31 | sylnibr | ⊢ ( 𝜑  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 ,  𝑤 } ) ) | 
						
							| 33 | 17 | eldifad | ⊢ ( 𝜑  →  𝑢  ∈  𝑉 ) | 
						
							| 34 | 3 6 24 26 33 25 21 | lspindpi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑢 } )  ∧  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 35 | 34 | simprd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 36 | 35 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  ≠  ( 𝑁 ‘ { 𝑤 } ) ) | 
						
							| 37 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 18 19 32 36 22 23 | mapdheq4 | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑣 ,  𝐺 ,  𝑤 〉 )  =  𝐸 ) |