| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh7.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdh7.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | mapdh7.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | mapdh7.s |  |-  .- = ( -g ` U ) | 
						
							| 5 |  | mapdh7.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | mapdh7.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdh7.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdh7.d |  |-  D = ( Base ` C ) | 
						
							| 9 |  | mapdh7.r |  |-  R = ( -g ` C ) | 
						
							| 10 |  | mapdh7.q |  |-  Q = ( 0g ` C ) | 
						
							| 11 |  | mapdh7.j |  |-  J = ( LSpan ` C ) | 
						
							| 12 |  | mapdh7.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 13 |  | mapdh7.i |  |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) | 
						
							| 14 |  | mapdh7.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | mapdh7.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | mapdh7.mn |  |-  ( ph -> ( M ` ( N ` { u } ) ) = ( J ` { F } ) ) | 
						
							| 17 |  | mapdh7.x |  |-  ( ph -> u e. ( V \ { .0. } ) ) | 
						
							| 18 |  | mapdh7.y |  |-  ( ph -> v e. ( V \ { .0. } ) ) | 
						
							| 19 |  | mapdh7.z |  |-  ( ph -> w e. ( V \ { .0. } ) ) | 
						
							| 20 |  | mapdh7.ne |  |-  ( ph -> ( N ` { u } ) =/= ( N ` { v } ) ) | 
						
							| 21 |  | mapdh7.wn |  |-  ( ph -> -. w e. ( N ` { u , v } ) ) | 
						
							| 22 |  | mapdh7a |  |-  ( ph -> ( I ` <. u , F , v >. ) = G ) | 
						
							| 23 |  | mapdh7.b |  |-  ( ph -> ( I ` <. u , F , w >. ) = E ) | 
						
							| 24 | 1 2 14 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 25 | 18 | eldifad |  |-  ( ph -> v e. V ) | 
						
							| 26 | 19 | eldifad |  |-  ( ph -> w e. V ) | 
						
							| 27 | 3 5 6 24 17 25 26 20 21 | lspindp1 |  |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { v } ) /\ -. u e. ( N ` { w , v } ) ) ) | 
						
							| 28 | 27 | simprd |  |-  ( ph -> -. u e. ( N ` { w , v } ) ) | 
						
							| 29 |  | prcom |  |-  { v , w } = { w , v } | 
						
							| 30 | 29 | fveq2i |  |-  ( N ` { v , w } ) = ( N ` { w , v } ) | 
						
							| 31 | 30 | eleq2i |  |-  ( u e. ( N ` { v , w } ) <-> u e. ( N ` { w , v } ) ) | 
						
							| 32 | 28 31 | sylnibr |  |-  ( ph -> -. u e. ( N ` { v , w } ) ) | 
						
							| 33 | 17 | eldifad |  |-  ( ph -> u e. V ) | 
						
							| 34 | 3 6 24 26 33 25 21 | lspindpi |  |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { u } ) /\ ( N ` { w } ) =/= ( N ` { v } ) ) ) | 
						
							| 35 | 34 | simprd |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { v } ) ) | 
						
							| 36 | 35 | necomd |  |-  ( ph -> ( N ` { v } ) =/= ( N ` { w } ) ) | 
						
							| 37 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 18 19 32 36 22 23 | mapdheq4 |  |-  ( ph -> ( I ` <. v , G , w >. ) = E ) |