| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh7.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdh7.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | mapdh7.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | mapdh7.s |  |-  .- = ( -g ` U ) | 
						
							| 5 |  | mapdh7.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | mapdh7.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdh7.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdh7.d |  |-  D = ( Base ` C ) | 
						
							| 9 |  | mapdh7.r |  |-  R = ( -g ` C ) | 
						
							| 10 |  | mapdh7.q |  |-  Q = ( 0g ` C ) | 
						
							| 11 |  | mapdh7.j |  |-  J = ( LSpan ` C ) | 
						
							| 12 |  | mapdh7.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 13 |  | mapdh7.i |  |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) | 
						
							| 14 |  | mapdh7.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | mapdh7.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | mapdh7.mn |  |-  ( ph -> ( M ` ( N ` { u } ) ) = ( J ` { F } ) ) | 
						
							| 17 |  | mapdh7.x |  |-  ( ph -> u e. ( V \ { .0. } ) ) | 
						
							| 18 |  | mapdh7.y |  |-  ( ph -> v e. ( V \ { .0. } ) ) | 
						
							| 19 |  | mapdh7.z |  |-  ( ph -> w e. ( V \ { .0. } ) ) | 
						
							| 20 |  | mapdh7.ne |  |-  ( ph -> ( N ` { u } ) =/= ( N ` { v } ) ) | 
						
							| 21 |  | mapdh7.wn |  |-  ( ph -> -. w e. ( N ` { u , v } ) ) | 
						
							| 22 |  | mapdh7a |  |-  ( ph -> ( I ` <. u , F , v >. ) = G ) | 
						
							| 23 |  | mapdh7.b |  |-  ( ph -> ( I ` <. u , F , w >. ) = E ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | mapdh7dN |  |-  ( ph -> ( I ` <. v , G , w >. ) = E ) | 
						
							| 25 | 18 | eldifad |  |-  ( ph -> v e. V ) | 
						
							| 26 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 25 20 | mapdhcl |  |-  ( ph -> ( I ` <. u , F , v >. ) e. D ) | 
						
							| 27 | 22 26 | eqeltrrd |  |-  ( ph -> G e. D ) | 
						
							| 28 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 18 27 20 | mapdheq |  |-  ( ph -> ( ( I ` <. u , F , v >. ) = G <-> ( ( M ` ( N ` { v } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( u .- v ) } ) ) = ( J ` { ( F R G ) } ) ) ) ) | 
						
							| 29 | 22 28 | mpbid |  |-  ( ph -> ( ( M ` ( N ` { v } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( u .- v ) } ) ) = ( J ` { ( F R G ) } ) ) ) | 
						
							| 30 | 29 | simpld |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( J ` { G } ) ) | 
						
							| 31 | 19 | eldifad |  |-  ( ph -> w e. V ) | 
						
							| 32 | 1 2 14 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 33 | 17 | eldifad |  |-  ( ph -> u e. V ) | 
						
							| 34 | 3 6 32 31 33 25 21 | lspindpi |  |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { u } ) /\ ( N ` { w } ) =/= ( N ` { v } ) ) ) | 
						
							| 35 | 34 | simpld |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { u } ) ) | 
						
							| 36 | 35 | necomd |  |-  ( ph -> ( N ` { u } ) =/= ( N ` { w } ) ) | 
						
							| 37 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 31 36 | mapdhcl |  |-  ( ph -> ( I ` <. u , F , w >. ) e. D ) | 
						
							| 38 | 23 37 | eqeltrrd |  |-  ( ph -> E e. D ) | 
						
							| 39 | 34 | simprd |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { v } ) ) | 
						
							| 40 | 39 | necomd |  |-  ( ph -> ( N ` { v } ) =/= ( N ` { w } ) ) | 
						
							| 41 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 27 30 18 19 38 40 | mapdheq2 |  |-  ( ph -> ( ( I ` <. v , G , w >. ) = E -> ( I ` <. w , E , v >. ) = G ) ) | 
						
							| 42 | 24 41 | mpd |  |-  ( ph -> ( I ` <. w , E , v >. ) = G ) |