Metamath Proof Explorer


Theorem mapdh7fN

Description: Part (7) of Baer p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh7.h H=LHypK
mapdh7.u U=DVecHKW
mapdh7.v V=BaseU
mapdh7.s -˙=-U
mapdh7.o 0˙=0U
mapdh7.n N=LSpanU
mapdh7.c C=LCDualKW
mapdh7.d D=BaseC
mapdh7.r R=-C
mapdh7.q Q=0C
mapdh7.j J=LSpanC
mapdh7.m M=mapdKW
mapdh7.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh7.k φKHLWH
mapdh7.f φFD
mapdh7.mn φMNu=JF
mapdh7.x φuV0˙
mapdh7.y φvV0˙
mapdh7.z φwV0˙
mapdh7.ne φNuNv
mapdh7.wn φ¬wNuv
mapdh7a φIuFv=G
mapdh7.b φIuFw=E
Assertion mapdh7fN φIwEv=G

Proof

Step Hyp Ref Expression
1 mapdh7.h H=LHypK
2 mapdh7.u U=DVecHKW
3 mapdh7.v V=BaseU
4 mapdh7.s -˙=-U
5 mapdh7.o 0˙=0U
6 mapdh7.n N=LSpanU
7 mapdh7.c C=LCDualKW
8 mapdh7.d D=BaseC
9 mapdh7.r R=-C
10 mapdh7.q Q=0C
11 mapdh7.j J=LSpanC
12 mapdh7.m M=mapdKW
13 mapdh7.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh7.k φKHLWH
15 mapdh7.f φFD
16 mapdh7.mn φMNu=JF
17 mapdh7.x φuV0˙
18 mapdh7.y φvV0˙
19 mapdh7.z φwV0˙
20 mapdh7.ne φNuNv
21 mapdh7.wn φ¬wNuv
22 mapdh7a φIuFv=G
23 mapdh7.b φIuFw=E
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 mapdh7dN φIvGw=E
25 18 eldifad φvV
26 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 25 20 mapdhcl φIuFvD
27 22 26 eqeltrrd φGD
28 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 18 27 20 mapdheq φIuFv=GMNv=JGMNu-˙v=JFRG
29 22 28 mpbid φMNv=JGMNu-˙v=JFRG
30 29 simpld φMNv=JG
31 19 eldifad φwV
32 1 2 14 dvhlvec φULVec
33 17 eldifad φuV
34 3 6 32 31 33 25 21 lspindpi φNwNuNwNv
35 34 simpld φNwNu
36 35 necomd φNuNw
37 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 31 36 mapdhcl φIuFwD
38 23 37 eqeltrrd φED
39 34 simprd φNwNv
40 39 necomd φNvNw
41 10 13 1 12 2 3 4 5 6 7 8 9 11 14 27 30 18 19 38 40 mapdheq2 φIvGw=EIwEv=G
42 24 41 mpd φIwEv=G