Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh7.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdh7.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdh7.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
mapdh7.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
mapdh7.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
mapdh7.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdh7.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdh7.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
mapdh7.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
mapdh7.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
11 |
|
mapdh7.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdh7.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
mapdh7.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
14 |
|
mapdh7.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdh7.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
mapdh7.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
17 |
|
mapdh7.x |
⊢ ( 𝜑 → 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
mapdh7.y |
⊢ ( 𝜑 → 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
|
mapdh7.z |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
20 |
|
mapdh7.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) |
21 |
|
mapdh7.wn |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) ) |
22 |
|
mapdh7a |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑢 , 𝐹 , 𝑣 〉 ) = 𝐺 ) |
23 |
|
mapdh7.b |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑢 , 𝐹 , 𝑤 〉 ) = 𝐸 ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
mapdh7dN |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑣 , 𝐺 , 𝑤 〉 ) = 𝐸 ) |
25 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
26 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 25 20
|
mapdhcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑢 , 𝐹 , 𝑣 〉 ) ∈ 𝐷 ) |
27 |
22 26
|
eqeltrrd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
28 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 18 27 20
|
mapdheq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑢 , 𝐹 , 𝑣 〉 ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 − 𝑣 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) |
29 |
22 28
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 − 𝑣 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) |
30 |
29
|
simpld |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
31 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑤 ∈ 𝑉 ) |
32 |
1 2 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
33 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
34 |
3 6 32 31 33 25 21
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑢 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) ) |
35 |
34
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑢 } ) ) |
36 |
35
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
37 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 31 36
|
mapdhcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑢 , 𝐹 , 𝑤 〉 ) ∈ 𝐷 ) |
38 |
23 37
|
eqeltrrd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐷 ) |
39 |
34
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) |
40 |
39
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
41 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 27 30 18 19 38 40
|
mapdheq2 |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑣 , 𝐺 , 𝑤 〉 ) = 𝐸 → ( 𝐼 ‘ 〈 𝑤 , 𝐸 , 𝑣 〉 ) = 𝐺 ) ) |
42 |
24 41
|
mpd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑤 , 𝐸 , 𝑣 〉 ) = 𝐺 ) |