Metamath Proof Explorer


Theorem mapdh7fN

Description: Part (7) of Baer p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh7.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh7.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.v 𝑉 = ( Base ‘ 𝑈 )
mapdh7.s = ( -g𝑈 )
mapdh7.o 0 = ( 0g𝑈 )
mapdh7.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh7.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.d 𝐷 = ( Base ‘ 𝐶 )
mapdh7.r 𝑅 = ( -g𝐶 )
mapdh7.q 𝑄 = ( 0g𝐶 )
mapdh7.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh7.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh7.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh7.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh7.f ( 𝜑𝐹𝐷 )
mapdh7.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh7.x ( 𝜑𝑢 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.y ( 𝜑𝑣 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.z ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh7.ne ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) )
mapdh7.wn ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) )
mapdh7a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑣 ⟩ ) = 𝐺 )
mapdh7.b ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑤 ⟩ ) = 𝐸 )
Assertion mapdh7fN ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑤 , 𝐸 , 𝑣 ⟩ ) = 𝐺 )

Proof

Step Hyp Ref Expression
1 mapdh7.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh7.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh7.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh7.s = ( -g𝑈 )
5 mapdh7.o 0 = ( 0g𝑈 )
6 mapdh7.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh7.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh7.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh7.r 𝑅 = ( -g𝐶 )
10 mapdh7.q 𝑄 = ( 0g𝐶 )
11 mapdh7.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh7.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh7.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh7.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh7.f ( 𝜑𝐹𝐷 )
16 mapdh7.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑢 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh7.x ( 𝜑𝑢 ∈ ( 𝑉 ∖ { 0 } ) )
18 mapdh7.y ( 𝜑𝑣 ∈ ( 𝑉 ∖ { 0 } ) )
19 mapdh7.z ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
20 mapdh7.ne ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) )
21 mapdh7.wn ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑢 , 𝑣 } ) )
22 mapdh7a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑣 ⟩ ) = 𝐺 )
23 mapdh7.b ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑤 ⟩ ) = 𝐸 )
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 mapdh7dN ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑣 , 𝐺 , 𝑤 ⟩ ) = 𝐸 )
25 18 eldifad ( 𝜑𝑣𝑉 )
26 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 25 20 mapdhcl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑣 ⟩ ) ∈ 𝐷 )
27 22 26 eqeltrrd ( 𝜑𝐺𝐷 )
28 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 18 27 20 mapdheq ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑣 ⟩ ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 𝑣 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) )
29 22 28 mpbid ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 𝑣 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) )
30 29 simpld ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
31 19 eldifad ( 𝜑𝑤𝑉 )
32 1 2 14 dvhlvec ( 𝜑𝑈 ∈ LVec )
33 17 eldifad ( 𝜑𝑢𝑉 )
34 3 6 32 31 33 25 21 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑢 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) ) )
35 34 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑢 } ) )
36 35 necomd ( 𝜑 → ( 𝑁 ‘ { 𝑢 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
37 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 31 36 mapdhcl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑢 , 𝐹 , 𝑤 ⟩ ) ∈ 𝐷 )
38 23 37 eqeltrrd ( 𝜑𝐸𝐷 )
39 34 simprd ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑣 } ) )
40 39 necomd ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
41 10 13 1 12 2 3 4 5 6 7 8 9 11 14 27 30 18 19 38 40 mapdheq2 ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑣 , 𝐺 , 𝑤 ⟩ ) = 𝐸 → ( 𝐼 ‘ ⟨ 𝑤 , 𝐸 , 𝑣 ⟩ ) = 𝐺 ) )
42 24 41 mpd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑤 , 𝐸 , 𝑣 ⟩ ) = 𝐺 )