Metamath Proof Explorer


Theorem maxs1

Description: A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion maxs1 ( 𝐴 No 𝐴 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) )

Proof

Step Hyp Ref Expression
1 slerflex ( 𝐴 No 𝐴 ≤s 𝐴 )
2 iffalse ( ¬ 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) = 𝐴 )
3 2 breq2d ( ¬ 𝐴 ≤s 𝐵 → ( 𝐴 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) ↔ 𝐴 ≤s 𝐴 ) )
4 1 3 syl5ibrcom ( 𝐴 No → ( ¬ 𝐴 ≤s 𝐵𝐴 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) ) )
5 id ( 𝐴 ≤s 𝐵𝐴 ≤s 𝐵 )
6 iftrue ( 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) = 𝐵 )
7 5 6 breqtrrd ( 𝐴 ≤s 𝐵𝐴 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) )
8 4 7 pm2.61d2 ( 𝐴 No 𝐴 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) )