| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdslmd.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | mdslmd.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | mdslmd.3 | ⊢ 𝐶  ∈   Cℋ | 
						
							| 4 |  | mdslmd.4 | ⊢ 𝐷  ∈   Cℋ | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  𝑀ℋ  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 ) )  →  𝐴  𝑀ℋ  𝐵 ) | 
						
							| 6 | 1 2 | chincli | ⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ | 
						
							| 7 |  | ssmd1 | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈   Cℋ   ∧  𝐷  ∈   Cℋ   ∧  ( 𝐴  ∩  𝐵 )  ⊆  𝐷 )  →  ( 𝐴  ∩  𝐵 )  𝑀ℋ  𝐷 ) | 
						
							| 8 | 6 4 7 | mp3an12 | ⊢ ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  →  ( 𝐴  ∩  𝐵 )  𝑀ℋ  𝐷 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 )  →  ( 𝐴  ∩  𝐵 )  𝑀ℋ  𝐷 ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐴  𝑀ℋ  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 ) )  →  ( 𝐴  ∩  𝐵 )  𝑀ℋ  𝐷 ) | 
						
							| 11 |  | sslin | ⊢ ( 𝐷  ⊆  𝐵  →  ( 𝐴  ∩  𝐷 )  ⊆  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 12 |  | sstr | ⊢ ( ( ( 𝐴  ∩  𝐷 )  ⊆  ( 𝐴  ∩  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  ⊆  𝐶 )  →  ( 𝐴  ∩  𝐷 )  ⊆  𝐶 ) | 
						
							| 13 | 11 12 | sylan | ⊢ ( ( 𝐷  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐵 )  ⊆  𝐶 )  →  ( 𝐴  ∩  𝐷 )  ⊆  𝐶 ) | 
						
							| 14 | 13 | ancoms | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐷  ⊆  𝐵 )  →  ( 𝐴  ∩  𝐷 )  ⊆  𝐶 ) | 
						
							| 15 | 14 | ad2ant2rl | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 ) )  →  ( 𝐴  ∩  𝐷 )  ⊆  𝐶 ) | 
						
							| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴  𝑀ℋ  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 ) )  →  ( 𝐴  ∩  𝐷 )  ⊆  𝐶 ) | 
						
							| 17 |  | simp2r | ⊢ ( ( 𝐴  𝑀ℋ  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 ) )  →  𝐶  ⊆  𝐴 ) | 
						
							| 18 | 1 2 4 3 | mdslmd3i | ⊢ ( ( ( 𝐴  𝑀ℋ  𝐵  ∧  ( 𝐴  ∩  𝐵 )  𝑀ℋ  𝐷 )  ∧  ( ( 𝐴  ∩  𝐷 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 ) )  →  𝐶  𝑀ℋ  ( 𝐵  ∩  𝐷 ) ) | 
						
							| 19 | 5 10 16 17 18 | syl22anc | ⊢ ( ( 𝐴  𝑀ℋ  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 ) )  →  𝐶  𝑀ℋ  ( 𝐵  ∩  𝐷 ) ) | 
						
							| 20 |  | sseqin2 | ⊢ ( 𝐷  ⊆  𝐵  ↔  ( 𝐵  ∩  𝐷 )  =  𝐷 ) | 
						
							| 21 | 20 | biimpi | ⊢ ( 𝐷  ⊆  𝐵  →  ( 𝐵  ∩  𝐷 )  =  𝐷 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 )  →  ( 𝐵  ∩  𝐷 )  =  𝐷 ) | 
						
							| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝐴  𝑀ℋ  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 ) )  →  ( 𝐵  ∩  𝐷 )  =  𝐷 ) | 
						
							| 24 | 19 23 | breqtrd | ⊢ ( ( 𝐴  𝑀ℋ  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐶  ∧  𝐶  ⊆  𝐴 )  ∧  ( ( 𝐴  ∩  𝐵 )  ⊆  𝐷  ∧  𝐷  ⊆  𝐵 ) )  →  𝐶  𝑀ℋ  𝐷 ) |