| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdslmd.1 |
|- A e. CH |
| 2 |
|
mdslmd.2 |
|- B e. CH |
| 3 |
|
mdslmd.3 |
|- C e. CH |
| 4 |
|
mdslmd.4 |
|- D e. CH |
| 5 |
|
simp1 |
|- ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> A MH B ) |
| 6 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 7 |
|
ssmd1 |
|- ( ( ( A i^i B ) e. CH /\ D e. CH /\ ( A i^i B ) C_ D ) -> ( A i^i B ) MH D ) |
| 8 |
6 4 7
|
mp3an12 |
|- ( ( A i^i B ) C_ D -> ( A i^i B ) MH D ) |
| 9 |
8
|
adantr |
|- ( ( ( A i^i B ) C_ D /\ D C_ B ) -> ( A i^i B ) MH D ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> ( A i^i B ) MH D ) |
| 11 |
|
sslin |
|- ( D C_ B -> ( A i^i D ) C_ ( A i^i B ) ) |
| 12 |
|
sstr |
|- ( ( ( A i^i D ) C_ ( A i^i B ) /\ ( A i^i B ) C_ C ) -> ( A i^i D ) C_ C ) |
| 13 |
11 12
|
sylan |
|- ( ( D C_ B /\ ( A i^i B ) C_ C ) -> ( A i^i D ) C_ C ) |
| 14 |
13
|
ancoms |
|- ( ( ( A i^i B ) C_ C /\ D C_ B ) -> ( A i^i D ) C_ C ) |
| 15 |
14
|
ad2ant2rl |
|- ( ( ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> ( A i^i D ) C_ C ) |
| 16 |
15
|
3adant1 |
|- ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> ( A i^i D ) C_ C ) |
| 17 |
|
simp2r |
|- ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> C C_ A ) |
| 18 |
1 2 4 3
|
mdslmd3i |
|- ( ( ( A MH B /\ ( A i^i B ) MH D ) /\ ( ( A i^i D ) C_ C /\ C C_ A ) ) -> C MH ( B i^i D ) ) |
| 19 |
5 10 16 17 18
|
syl22anc |
|- ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> C MH ( B i^i D ) ) |
| 20 |
|
sseqin2 |
|- ( D C_ B <-> ( B i^i D ) = D ) |
| 21 |
20
|
biimpi |
|- ( D C_ B -> ( B i^i D ) = D ) |
| 22 |
21
|
adantl |
|- ( ( ( A i^i B ) C_ D /\ D C_ B ) -> ( B i^i D ) = D ) |
| 23 |
22
|
3ad2ant3 |
|- ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> ( B i^i D ) = D ) |
| 24 |
19 23
|
breqtrd |
|- ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> C MH D ) |