| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdslmd.1 |  |-  A e. CH | 
						
							| 2 |  | mdslmd.2 |  |-  B e. CH | 
						
							| 3 |  | mdslmd.3 |  |-  C e. CH | 
						
							| 4 |  | mdslmd.4 |  |-  D e. CH | 
						
							| 5 |  | simp1 |  |-  ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> A MH B ) | 
						
							| 6 | 1 2 | chincli |  |-  ( A i^i B ) e. CH | 
						
							| 7 |  | ssmd1 |  |-  ( ( ( A i^i B ) e. CH /\ D e. CH /\ ( A i^i B ) C_ D ) -> ( A i^i B ) MH D ) | 
						
							| 8 | 6 4 7 | mp3an12 |  |-  ( ( A i^i B ) C_ D -> ( A i^i B ) MH D ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( A i^i B ) C_ D /\ D C_ B ) -> ( A i^i B ) MH D ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> ( A i^i B ) MH D ) | 
						
							| 11 |  | sslin |  |-  ( D C_ B -> ( A i^i D ) C_ ( A i^i B ) ) | 
						
							| 12 |  | sstr |  |-  ( ( ( A i^i D ) C_ ( A i^i B ) /\ ( A i^i B ) C_ C ) -> ( A i^i D ) C_ C ) | 
						
							| 13 | 11 12 | sylan |  |-  ( ( D C_ B /\ ( A i^i B ) C_ C ) -> ( A i^i D ) C_ C ) | 
						
							| 14 | 13 | ancoms |  |-  ( ( ( A i^i B ) C_ C /\ D C_ B ) -> ( A i^i D ) C_ C ) | 
						
							| 15 | 14 | ad2ant2rl |  |-  ( ( ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> ( A i^i D ) C_ C ) | 
						
							| 16 | 15 | 3adant1 |  |-  ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> ( A i^i D ) C_ C ) | 
						
							| 17 |  | simp2r |  |-  ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> C C_ A ) | 
						
							| 18 | 1 2 4 3 | mdslmd3i |  |-  ( ( ( A MH B /\ ( A i^i B ) MH D ) /\ ( ( A i^i D ) C_ C /\ C C_ A ) ) -> C MH ( B i^i D ) ) | 
						
							| 19 | 5 10 16 17 18 | syl22anc |  |-  ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> C MH ( B i^i D ) ) | 
						
							| 20 |  | sseqin2 |  |-  ( D C_ B <-> ( B i^i D ) = D ) | 
						
							| 21 | 20 | biimpi |  |-  ( D C_ B -> ( B i^i D ) = D ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( A i^i B ) C_ D /\ D C_ B ) -> ( B i^i D ) = D ) | 
						
							| 23 | 22 | 3ad2ant3 |  |-  ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> ( B i^i D ) = D ) | 
						
							| 24 | 19 23 | breqtrd |  |-  ( ( A MH B /\ ( ( A i^i B ) C_ C /\ C C_ A ) /\ ( ( A i^i B ) C_ D /\ D C_ B ) ) -> C MH D ) |