Step |
Hyp |
Ref |
Expression |
1 |
|
plusfreseq.1 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
plusfreseq.2 |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
plusfreseq.3 |
⊢ ⨣ = ( +𝑓 ‘ 𝑀 ) |
4 |
1 3
|
mgmplusf |
⊢ ( 𝑀 ∈ Mgm → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
5 |
|
frn |
⊢ ( ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 → ran ⨣ ⊆ 𝐵 ) |
6 |
|
ssel |
⊢ ( ran ⨣ ⊆ 𝐵 → ( ∅ ∈ ran ⨣ → ∅ ∈ 𝐵 ) ) |
7 |
6
|
nelcon3d |
⊢ ( ran ⨣ ⊆ 𝐵 → ( ∅ ∉ 𝐵 → ∅ ∉ ran ⨣ ) ) |
8 |
4 5 7
|
3syl |
⊢ ( 𝑀 ∈ Mgm → ( ∅ ∉ 𝐵 → ∅ ∉ ran ⨣ ) ) |
9 |
8
|
imp |
⊢ ( ( 𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵 ) → ∅ ∉ ran ⨣ ) |
10 |
1 2 3
|
plusfreseq |
⊢ ( ∅ ∉ ran ⨣ → ( + ↾ ( 𝐵 × 𝐵 ) ) = ⨣ ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵 ) → ( + ↾ ( 𝐵 × 𝐵 ) ) = ⨣ ) |