Step |
Hyp |
Ref |
Expression |
1 |
|
plusfreseq.1 |
|- B = ( Base ` M ) |
2 |
|
plusfreseq.2 |
|- .+ = ( +g ` M ) |
3 |
|
plusfreseq.3 |
|- .+^ = ( +f ` M ) |
4 |
1 3
|
mgmplusf |
|- ( M e. Mgm -> .+^ : ( B X. B ) --> B ) |
5 |
|
frn |
|- ( .+^ : ( B X. B ) --> B -> ran .+^ C_ B ) |
6 |
|
ssel |
|- ( ran .+^ C_ B -> ( (/) e. ran .+^ -> (/) e. B ) ) |
7 |
6
|
nelcon3d |
|- ( ran .+^ C_ B -> ( (/) e/ B -> (/) e/ ran .+^ ) ) |
8 |
4 5 7
|
3syl |
|- ( M e. Mgm -> ( (/) e/ B -> (/) e/ ran .+^ ) ) |
9 |
8
|
imp |
|- ( ( M e. Mgm /\ (/) e/ B ) -> (/) e/ ran .+^ ) |
10 |
1 2 3
|
plusfreseq |
|- ( (/) e/ ran .+^ -> ( .+ |` ( B X. B ) ) = .+^ ) |
11 |
9 10
|
syl |
|- ( ( M e. Mgm /\ (/) e/ B ) -> ( .+ |` ( B X. B ) ) = .+^ ) |