Metamath Proof Explorer


Theorem mgmplusfreseq

Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypotheses plusfreseq.1
|- B = ( Base ` M )
plusfreseq.2
|- .+ = ( +g ` M )
plusfreseq.3
|- .+^ = ( +f ` M )
Assertion mgmplusfreseq
|- ( ( M e. Mgm /\ (/) e/ B ) -> ( .+ |` ( B X. B ) ) = .+^ )

Proof

Step Hyp Ref Expression
1 plusfreseq.1
 |-  B = ( Base ` M )
2 plusfreseq.2
 |-  .+ = ( +g ` M )
3 plusfreseq.3
 |-  .+^ = ( +f ` M )
4 1 3 mgmplusf
 |-  ( M e. Mgm -> .+^ : ( B X. B ) --> B )
5 frn
 |-  ( .+^ : ( B X. B ) --> B -> ran .+^ C_ B )
6 ssel
 |-  ( ran .+^ C_ B -> ( (/) e. ran .+^ -> (/) e. B ) )
7 6 nelcon3d
 |-  ( ran .+^ C_ B -> ( (/) e/ B -> (/) e/ ran .+^ ) )
8 4 5 7 3syl
 |-  ( M e. Mgm -> ( (/) e/ B -> (/) e/ ran .+^ ) )
9 8 imp
 |-  ( ( M e. Mgm /\ (/) e/ B ) -> (/) e/ ran .+^ )
10 1 2 3 plusfreseq
 |-  ( (/) e/ ran .+^ -> ( .+ |` ( B X. B ) ) = .+^ )
11 9 10 syl
 |-  ( ( M e. Mgm /\ (/) e/ B ) -> ( .+ |` ( B X. B ) ) = .+^ )