Step |
Hyp |
Ref |
Expression |
1 |
|
plusfreseq.1 |
|- B = ( Base ` M ) |
2 |
|
plusfreseq.2 |
|- .+ = ( +g ` M ) |
3 |
|
plusfreseq.3 |
|- .+^ = ( +f ` M ) |
4 |
1 3
|
plusffn |
|- .+^ Fn ( B X. B ) |
5 |
|
fnfun |
|- ( .+^ Fn ( B X. B ) -> Fun .+^ ) |
6 |
4 5
|
ax-mp |
|- Fun .+^ |
7 |
6
|
a1i |
|- ( (/) e/ ran .+^ -> Fun .+^ ) |
8 |
|
id |
|- ( (/) e/ ran .+^ -> (/) e/ ran .+^ ) |
9 |
1 2 3
|
plusfval |
|- ( ( x e. B /\ y e. B ) -> ( x .+^ y ) = ( x .+ y ) ) |
10 |
9
|
eqcomd |
|- ( ( x e. B /\ y e. B ) -> ( x .+ y ) = ( x .+^ y ) ) |
11 |
10
|
rgen2 |
|- A. x e. B A. y e. B ( x .+ y ) = ( x .+^ y ) |
12 |
11
|
a1i |
|- ( (/) e/ ran .+^ -> A. x e. B A. y e. B ( x .+ y ) = ( x .+^ y ) ) |
13 |
|
fveq2 |
|- ( p = <. x , y >. -> ( .+ ` p ) = ( .+ ` <. x , y >. ) ) |
14 |
|
df-ov |
|- ( x .+ y ) = ( .+ ` <. x , y >. ) |
15 |
13 14
|
eqtr4di |
|- ( p = <. x , y >. -> ( .+ ` p ) = ( x .+ y ) ) |
16 |
|
fveq2 |
|- ( p = <. x , y >. -> ( .+^ ` p ) = ( .+^ ` <. x , y >. ) ) |
17 |
|
df-ov |
|- ( x .+^ y ) = ( .+^ ` <. x , y >. ) |
18 |
16 17
|
eqtr4di |
|- ( p = <. x , y >. -> ( .+^ ` p ) = ( x .+^ y ) ) |
19 |
15 18
|
eqeq12d |
|- ( p = <. x , y >. -> ( ( .+ ` p ) = ( .+^ ` p ) <-> ( x .+ y ) = ( x .+^ y ) ) ) |
20 |
19
|
ralxp |
|- ( A. p e. ( B X. B ) ( .+ ` p ) = ( .+^ ` p ) <-> A. x e. B A. y e. B ( x .+ y ) = ( x .+^ y ) ) |
21 |
12 20
|
sylibr |
|- ( (/) e/ ran .+^ -> A. p e. ( B X. B ) ( .+ ` p ) = ( .+^ ` p ) ) |
22 |
|
fndm |
|- ( .+^ Fn ( B X. B ) -> dom .+^ = ( B X. B ) ) |
23 |
22
|
eqcomd |
|- ( .+^ Fn ( B X. B ) -> ( B X. B ) = dom .+^ ) |
24 |
4 23
|
ax-mp |
|- ( B X. B ) = dom .+^ |
25 |
24
|
fveqressseq |
|- ( ( Fun .+^ /\ (/) e/ ran .+^ /\ A. p e. ( B X. B ) ( .+ ` p ) = ( .+^ ` p ) ) -> ( .+ |` ( B X. B ) ) = .+^ ) |
26 |
7 8 21 25
|
syl3anc |
|- ( (/) e/ ran .+^ -> ( .+ |` ( B X. B ) ) = .+^ ) |