Metamath Proof Explorer


Theorem plusfreseq

Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypotheses plusfreseq.1 B = Base M
plusfreseq.2 + ˙ = + M
plusfreseq.3 ˙ = + 𝑓 M
Assertion plusfreseq ran ˙ + ˙ B × B = ˙

Proof

Step Hyp Ref Expression
1 plusfreseq.1 B = Base M
2 plusfreseq.2 + ˙ = + M
3 plusfreseq.3 ˙ = + 𝑓 M
4 1 3 plusffn ˙ Fn B × B
5 fnfun ˙ Fn B × B Fun ˙
6 4 5 ax-mp Fun ˙
7 6 a1i ran ˙ Fun ˙
8 id ran ˙ ran ˙
9 1 2 3 plusfval x B y B x ˙ y = x + ˙ y
10 9 eqcomd x B y B x + ˙ y = x ˙ y
11 10 rgen2 x B y B x + ˙ y = x ˙ y
12 11 a1i ran ˙ x B y B x + ˙ y = x ˙ y
13 fveq2 p = x y + ˙ p = + ˙ x y
14 df-ov x + ˙ y = + ˙ x y
15 13 14 eqtr4di p = x y + ˙ p = x + ˙ y
16 fveq2 p = x y ˙ p = ˙ x y
17 df-ov x ˙ y = ˙ x y
18 16 17 eqtr4di p = x y ˙ p = x ˙ y
19 15 18 eqeq12d p = x y + ˙ p = ˙ p x + ˙ y = x ˙ y
20 19 ralxp p B × B + ˙ p = ˙ p x B y B x + ˙ y = x ˙ y
21 12 20 sylibr ran ˙ p B × B + ˙ p = ˙ p
22 fndm ˙ Fn B × B dom ˙ = B × B
23 22 eqcomd ˙ Fn B × B B × B = dom ˙
24 4 23 ax-mp B × B = dom ˙
25 24 fveqressseq Fun ˙ ran ˙ p B × B + ˙ p = ˙ p + ˙ B × B = ˙
26 7 8 21 25 syl3anc ran ˙ + ˙ B × B = ˙