Metamath Proof Explorer


Theorem plusfreseq

Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypotheses plusfreseq.1 B=BaseM
plusfreseq.2 +˙=+M
plusfreseq.3 ˙=+𝑓M
Assertion plusfreseq ran˙+˙B×B=˙

Proof

Step Hyp Ref Expression
1 plusfreseq.1 B=BaseM
2 plusfreseq.2 +˙=+M
3 plusfreseq.3 ˙=+𝑓M
4 1 3 plusffn ˙FnB×B
5 fnfun ˙FnB×BFun˙
6 4 5 ax-mp Fun˙
7 6 a1i ran˙Fun˙
8 id ran˙ran˙
9 1 2 3 plusfval xByBx˙y=x+˙y
10 9 eqcomd xByBx+˙y=x˙y
11 10 rgen2 xByBx+˙y=x˙y
12 11 a1i ran˙xByBx+˙y=x˙y
13 fveq2 p=xy+˙p=+˙xy
14 df-ov x+˙y=+˙xy
15 13 14 eqtr4di p=xy+˙p=x+˙y
16 fveq2 p=xy˙p=˙xy
17 df-ov x˙y=˙xy
18 16 17 eqtr4di p=xy˙p=x˙y
19 15 18 eqeq12d p=xy+˙p=˙px+˙y=x˙y
20 19 ralxp pB×B+˙p=˙pxByBx+˙y=x˙y
21 12 20 sylibr ran˙pB×B+˙p=˙p
22 fndm ˙FnB×Bdom˙=B×B
23 22 eqcomd ˙FnB×BB×B=dom˙
24 4 23 ax-mp B×B=dom˙
25 24 fveqressseq Fun˙ran˙pB×B+˙p=˙p+˙B×B=˙
26 7 8 21 25 syl3anc ran˙+˙B×B=˙